Geometric Numerical Integration References

Background Reading Material
  • Douglas N. Arnold. Numerical Analysis and Scientific Computing. University of Minnesota, 2015-2016. Chapter 1 Interpolation and Approximation, Chapter 2 Numerical Quadrature. (Author's Web Site)

  • Ernst Hairer and Christian Lubich. Numerical Solution of Ordinary Differential Equations. The Princeton Companion to Applied Mathematics, 293-305, 2015. Princeton University Press. (Author's Web Site)

  • Ernst Hairer, Christian Lubich and Gerhard Wanner. Geometric Numerical Integration Illustrated by the Störmer–Verlet Method. Acta Numerica 12, 399-450, 2003. (Journal)

  • Adrián J. Lew and Pablo Mata: A Brief Introduction to Variational Integrators. Structure-preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics, 201-291, 2016. (Journal)

  • Alain Bossavit. Applied Differential Geometry: A Compendium. (Author's Web Site)

Differential Forms
  • Tevian Dray. Differential Forms and the Geometry of General Relativity. CRC Press, 2014.

  • Shigeyuki Morita (森田 茂之). Geometry of Differential Forms(微分形式の幾何学). American Mathematical Society, 2001.

  • Richard W. R. Darling. Differential Forms and Connections. Cambridge University Press, 1994.

Differential Geometry
  • Jeffrey M. Lee. Manifolds and Differential Geometry. American Mathematical Society, 2009.

  • John M. Lee. Introduction to Smooth Manifolds. Springer, 2013. (eBook)

  • Loring W. Tu. An Introduction to Manifolds. Springer, 2011. (eBook)

  • Ralph Abraham, Jerrold E. Marsden and Tudor S. Ratiu. Manifolds, Tensor Analysis, and Applications. Springer, 1988. (eBook)

  • Michael Spivak. A Comprehensive Introduction to Differential Geometry. Publish or Perish, 1999.

Geometry in Mathematical Physics
  • John Baez and Javier P. Muniain. Gauge Fields, Knots and Gravity. World Scientific, 1994.

  • Gerardo F. Torres del Castillo. Differentiable Manifolds: A Theoretical Physics Approach. Birkhäuser, 2012. (eBook)

  • Mikio Nakahara. Geometry, Topology and Physics. CRC Press, 2003.

  • Theodore Frankel. The Geometry of Physics. Cambridge University Press, 2011.

Geometric Mechanics
  • Jorge V. José and Eugene J. Saletan. Classical Dynamics. Cambridge University Press, 1998.

  • Vladimir I. Arnol’d. Mathematical Methods of Classical Mechanics. Springer, 1989. (eBook)

  • Jerrold E. Marsden and Tudor S. Ratiu. Introduction to Mechanics and Symmetry. Springer, 1999. (eBook)

  • Ralph Abraham and Jerrold E. Marsden. Foundations of Mechanics. Addison-Wesley, 1987. (eBook)

Numerical Analysis
  • Douglas N. Arnold. Numerical Analysis and Scientific Computing. University of Minnesota, 2015-2016. (Author's Web Site)

  • Douglas N. Arnold. A Concise Introduction to Numerical Analysis. Penn State University, 2001. (Author's Web Site)

  • Alfio Quarteroni, Riccardo Sacco and Fausto Saleri. Numerical Mathematics. Springer, 2007. (eBook)

  • Walter Gautschi: Numerical Analysis: An Introduction. Birkhäuser, 2012. (eBook)

  • Peter Deuflhard, Andreas Hohmann. Numerical Analysis in Modern Scientific Computing. Springer, 2003. (eBook)

  • Kendall Atkinson and Weimin Han. Theoretical Numerical Analysis: A Functional Analysis Framework. Springer, 2009. (eBook)

Numerical Solution of Ordinary Differential Equations
  • Ernst Hairer and Christian Lubich. Numerical Solution of Ordinary Differential Equations. The Princeton Companion to Applied Mathematics, 293-305, 2015. Princeton University Press. (Author's Web Site)

  • Ernst Hairer, Syvert P. Nørsett and Gerhard Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer, 1993. (eBook)

  • Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, 1996. (eBook)

  • Peter Deuflhard, Folkmar Bornemann. Scientific Computing with Ordinary Differential Equations. Springer, 2002. (eBook)

  • John C. Butcher. Numerical Methods for Ordinary Differential Equations. Wiley, 2016.

Geometric Numerical Integration
  • Ernst Hairer, Christian Lubich and Gerhard Wanner. Geometric Numerical Integration Illustrated by the Störmer–Verlet Method. Acta Numerica 12, 399-450, 2003. (Journal)

  • Ernst Hairer, Christian Lubich and Gerhard Wanner. Geometric Numerical Integration. Springer, 2006. (eBook)

  • Benedict Leimkuhler and Sebastian Reich. Simulating Hamiltonian Dynamics. Cambridge University Press, 2005. (eBook)

  • Sergio Blanes, Fernando Casas. A Concise Introduction to Geometric Numerical Integration. CRC Press, 2016.

Variational Integrators
  • Adrián J. Lew and Pablo Mata: A Brief Introduction to Variational Integrators. Structure-preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics, 201-291, 2016. (Journal)

  • Jerrold E. Marsden and Matthew West. Discrete Mechanics and Variational Integrators. Acta Numerica Volume 10, 357-514, 2001. (Journal)

  • Jerrold E. Marsden, George W. Patrick, Steve Shkoller: Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs. Communications in Mathematical Physics Volume 199, 351–395, 1998). (Journal)

Backward Error Analysis
  • Sebastian Reich. Backward Error Analysis for Numerical Integrators. SIAM Journal on Numerical Analysis 36, 1549-1570, 1999. (Journal)

  • Ernst Hairer. Backward Error Analysis for Multistep Methods. Numerische Mathematik 84, 199-232, 1999. (Journal)

Other Research Articles, Reviews
  • Robert I. McLachlan and G. Reinout W. Quispel. Splitting Methods. Acta Numerica 11, 341-434, 2002. (Journal)

Finite Element and Discontinuous Galerkin Methods
  • Mats G. Larson and Fredrik Bengzon: The Finite Element Method. Theory, Implementation, and Applications. Springer, 2013. (eBook)

  • Daniele Boffi, Franco Brezzi, Michel Fortin: Mixed Finite Element Methods and Applications. Springer, 2013. (eBook)

  • Jan S. Hesthaven, Tim Warburton: Nodal Discontinuous Galerkin Methods. Springer, 2008. (eBook)

Scientific Computing with Python
  • Robert Johansson. Lectures on Scientific Computing with Python. (GitHub)

  • Anthony Scopatz and Kathryn D. Huff. Effective Computation in Physics. O'Reilly, 2015. (Safari Books)

  • Hans Petter Langtangen. A Primer on Scientific Programming with Python. Springer, 2014. (eBook)

The Python Programming Language
  • Mark Lutz. Learning Python. O'Reilly, 2013. (Safari Books)

  • Luciano Ramalho. Fluent Python. O'Reilly, 2015. (Safari Books)

  • Paul Gries, Jennifer Campbell, Jason Montojo. Practical Programming: An Introduction to Computer Science Using Python 3. Pragmatic Bookshelf, 2013. (Safari Books)

High Performance Computing with Python
  • Kurt W. Smith. Cython. O'Reilly, 2015. (Safari Books)

  • Micha Gorelick, Ian Ozsvald. High Performance Python. O'Reilly, 2014. (Safari Books)

  • Fernando Doglio, Mastering Python High Performance. Packt Publishing, 2015. (Safari Books)