GEMKIN : GEOMETRIC METHODS FOR KINETIC EQUATIONS William Barham, Katharina Kormann, Michael Kraus, Nicolas Legouy, Philip J. Morrison, Benedikt Perse, Eric Sonnendrücker Technische Universität München, Max-Planck-Institut für Plasmaphysik, The University of Texas at Austin

Geometric Discretization Methods

- Courant, Friedrichs and Lewy noticed already in 1928 that preserving first integrals of an equation during discretisation is advantageous for the stability of the resulting scheme
- preserving such geometric structures results not only in more stable schemes but also in more realistic and more accurate representations of the physical system at hand
- geometric structure: global property of some system of partial differential equations, which can be defined independently of a particular coordinate representation, e.g., topology, conservation laws, symmetries, constraints, identities
- Geometric discretization methods enable correct long time simulation of complex systems, like tokamaks

Hamiltonian dynamics

Hamiltonian dynamics is a mathematical formalism to describe the equations of a physical system. The equations of motion of such systems are given by

$$\frac{\mathrm{d}F}{\mathrm{d}t} = \{F, \mathcal{H}\}.$$

Here, \mathcal{H} is the Hamiltonian which corresponds to the total energy of the system and $\{.,.\}$ is a Poisson bracket, a skew-symmetric operator satisfying the Leibniz rule and the Jacobi identity.

A Casimir invariant is a functional C which Poisson commutes with every functional F:

$$\left\{F,C\right\}=0.$$

A second family of conserved quantities are momentum maps, Φ , along whose flow the Hamiltonian is constant, i.e.

 $\{\mathcal{H}, \Phi\} = 0 \Rightarrow \frac{d\Phi}{dt} = 0.$

Kinetic models of plasma dynamics

Geometric discretisation of Vlasov-Maxwell

• Maxwell's equation are discretized in the framework of Finite Element Exterior Calculus (FEEC), based on a continuous and discrete complex involving compatible Finite Element spaces:

$$\begin{array}{cccc} \mathbf{grad} & \mathbf{curl} & \mathrm{div} \\ H^{1}(\Omega) & \longrightarrow & H(\mathbf{curl}, \Omega) & \longrightarrow & H(\mathrm{div}, \Omega) & \longrightarrow & L^{2}(\Omega) \\ \downarrow \Pi_{0} & \downarrow \Pi_{1} & \downarrow \Pi_{2} & \downarrow \Pi_{3} \\ \mathbf{grad} & \mathbf{curl} & \mathrm{div} \\ V_{0} & \longrightarrow & V_{1} & \longrightarrow & V_{2} & \longrightarrow & V_{3} \end{array}$$

 $-\operatorname{curl}\operatorname{grad} = 0$ and div $\operatorname{curl} = 0$ exactly preserved at discrete level - Commuting diagram is an essential piece:

 $\Pi_1 \mathbf{grad}\psi = \mathbf{grad}\Pi_0\psi, \quad \Pi_2 \mathbf{curlA} = \mathbf{curl}\Pi_1\mathbf{A}, \quad \Pi_3 \mathrm{div}\mathbf{A} = \mathrm{div}\Pi_2\mathbf{A}.$

• The Vlasov equation is discretized with a Particle in Cell method (PIC):

$$f_h(\mathbf{x}, \mathbf{v}, t) = \sum_{p=1}^{Np} w_p \delta(\mathbf{x} - \mathbf{x}_p(t)) \delta(\mathbf{v} - \mathbf{v}_p(t)).$$

• Plugging these approximations in the Poisson bracket and the hamiltonian a Finite Dimensional Poisson bracket and Hamiltonian are obtained.

• Time discretisation based on Hamiltonian splitting or Discrete Gradient method. • Implemented with spline Finite Elements in arbitrary curvilinear coordinates.

The Vlasov equation,

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \nabla_{\mathbf{x}} f_s + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f_s = 0,$$

describes the evolution of the probability distribution function of a plasma. It is coupled to the Maxwell equations, which describe the evolution of the electromagnetic fields,

$$\frac{\partial \mathbf{E}}{\partial t} = \nabla \times \mathbf{B} - \mathbf{J}, \qquad \nabla \cdot \mathbf{E} = \rho,$$
$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E}, \qquad \nabla \cdot \mathbf{B} = 0,$$

by the source terms **J** and ρ , the first two moments of the particle distribution function f_s :

$$\mathbf{J} = \sum_{s} q_s \int f_s \, \mathbf{v} \, \mathrm{d} \mathbf{v}, \qquad \qquad \rho = \sum_{s} q_s \int f_s \, \mathrm{d} \mathbf{v}$$

The system satisfies the following conservation law

$$\frac{\partial \rho}{\partial t} + \operatorname{div} \mathbf{J} = 0.$$

The Hamiltonian is given by

$$\mathcal{H} = \sum_{s} \frac{m_s}{2} \int |\mathbf{v}|^2 f_s \,\mathrm{d}\mathbf{x} \,\mathrm{d}\mathbf{v} + \frac{1}{2} \int \left(|\mathbf{E}|^2 + |\mathbf{B}|^2 \right) \,\mathrm{d}\mathbf{x}.$$

The Poisson bracket for the Vlasov-Maxwell system has the following form

$$\{F, G\}(f_s, \mathbf{E}, \mathbf{B}) = \sum_{s} \int \left[\frac{\delta F}{\delta f_s}, \frac{\delta G}{\delta f_s}\right] d\mathbf{x} d\mathbf{v} + \sum_{s} \frac{q_s}{m_s} \int f_s \left(\nabla_{\mathbf{v}} \frac{\delta F}{\delta f_s} \cdot \frac{\delta G}{\delta \mathbf{E}} - \nabla_{\mathbf{v}} \frac{\delta G}{\delta f_s} \cdot \frac{\delta F}{\delta \mathbf{E}}\right) d\mathbf{x} d\mathbf{v} + \sum_{s} \frac{q_s}{m_s^2} \int f_s \mathbf{B} \cdot \left(\nabla_{\mathbf{v}} \frac{\delta F}{\delta f_s} \times \nabla_{\mathbf{v}} \frac{\delta G}{\delta f_s}\right) d\mathbf{x} d\mathbf{v} + \int \left(\operatorname{curl} \frac{\delta F}{\delta \mathbf{E}} \cdot \frac{\delta G}{\delta \mathbf{B}} - \operatorname{curl} \frac{\delta G}{\delta \mathbf{E}} \cdot \frac{\delta F}{\delta \mathbf{B}}\right) d\mathbf{x}.$$

Adding the collision operator

• Vlasov-Maxwell-Landau kinetic model

-Conserves energy $\mathcal{H} = \frac{m}{2} \int f v^2 \mathrm{d} \mathbf{x} \mathrm{d} \mathbf{v} + \frac{\epsilon_0}{2} \int E^2 \mathrm{d} \mathbf{x} + \frac{1}{2\mu_0} \int B^2 \mathrm{d} \mathbf{x}$ -Dissipates entropy $\mathcal{S} = \int f \ln f d\mathbf{x} d\mathbf{v}$

• Fits into the metriplectic framework, involving a Hamiltonian and a dissipative part

$$\frac{d}{dt}\mathcal{F} = \{\mathcal{F}, \mathcal{H}\} + (\mathcal{F}, \mathcal{S})$$

- The metriplectic bracket of the Vlasov-Maxwell-Landau system preserves mass, momentum, total energy, the divergence constraints on E and B, and satisfies an H-theorem (monotonic dissipation of entropy, unique equilibrium state)
- many systems in plasma physics (e.g., XMHD, kinetic, hybrid) possess a similar structure consisting of a Hamiltonian part $\{\cdot, \cdot\}$ and an entropy-dissipating part (\cdot, \cdot) .
- discretisation of the brackets instead of the dynamical equation guarantees these properties at the discrete level for different numerical methods (FEM, DG, PIC, ...)

Nonlinear Landau Collision Operator

The Casimir invariants of this bracket are

$$C_E = \int h_E(\mathbf{x}) (\operatorname{div} \mathbf{E} - \rho) \, \mathrm{d}\mathbf{x}, \qquad C_B = \int h_B(\mathbf{x}) \, \operatorname{div} \mathbf{B} \, \mathrm{d}\mathbf{x},$$

which are equivalent to two of the Maxwell's equations.

A momentum map is the total momentum:

$$P = \sum_{s} \int m_{s} \mathbf{v} f_{s} \, \mathrm{d} \mathbf{x} \, \mathrm{d} \mathbf{v} + \int \mathbf{E} \times \mathbf{B} \, \mathrm{d} \mathbf{x}.$$

- FEM, DG, PIC discretizations of the metric bracket formulation of the Landau operator
- temporal discretisation via discrete gradient methods
- exact conservation of mass, momentum, energy and discrete H-theorem

• Outlook:

- -PIC and DG discretisation of the full 6D Vlasov-Maxwell-Landau system
- -low-rank tensor approximation for more efficient computations

