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Geometric Discretization Methods

• Courant, Friedrichs and Lewy noticed already in 1928 that preserving first integrals of an equation during discretisation is advan-
tageous for the stability of the resulting scheme

• preserving such geometric structures results not only in more stable schemes but also in more realistic and more accurate repre-
sentations of the physical system at hand

• geometric structure: global property of some system of partial differential equations, which can be defined independently of a
particular coordinate representation, e.g., topology, conservation laws, symmetries, constraints, identities

• Geometric discretization methods enable correct long time simulation of complex systems, like tokamaks

Hamiltonian dynamics

Hamiltonian dynamics is a mathematical formalism to describe the equations of a physical
system. The equations of motion of such systems are given by

dF

dt
=
{
F,H

}
.

Here, H is the Hamiltonian which corresponds to the total energy of the system and
{
., .
}

is a Poisson bracket, a skew-symmetric operator satisfying the Leibniz rule and the Jacobi
identity.
A Casimir invariant is a functional C which Poisson commutes with every functional F :{

F,C
}

= 0.

A second family of conserved quantities are momentum maps, Φ, along whose flow the
Hamiltonian is constant, i.e.

{H,Φ} = 0⇒ dΦ

dt
= 0.

Kinetic models of plasma dynamics

The Vlasov equation,

∂fs
∂t

+ v · ∇xfs +
qs
ms

(
E + v ×B

)
· ∇vfs = 0,

describes the evolution of the probability distribution function of a plasma.
It is coupled to the Maxwell equations, which describe the evolution of the electromagnetic
fields,

∂E

∂t
= ∇×B− J, ∇ · E = ρ,

∂B

∂t
= −∇× E, ∇ ·B = 0,

by the source terms J and ρ, the first two moments of the particle distribution function fs:

J =
∑
s

qs

∫
fs v dv, ρ =

∑
s

qs

∫
fs dv.

The system satisfies the following conservation law

∂ρ

∂t
+ div J = 0.

The Hamiltonian is given by

H =
∑
s

ms

2

∫
|v|2fs dx dv +

1

2

∫ (
|E|2 + |B|2

)
dx.

The Poisson bracket for the Vlasov-Maxwell system has the following form

{F,G}(fs,E,B) =
∑
s

∫ [
δF

δfs
,
δG

δfs

]
dx dv

+
∑
s

qs
ms

∫
fs

(
∇v

δF

δfs
· δG
δE
−∇v

δG

δfs
· δF
δE

)
dx dv

+
∑
s

qs
m2
s

∫
fsB ·

(
∇v

δF

δfs
×∇v

δG

δfs

)
dx dv

+

∫ (
curl

δF

δE
· δG
δB
− curl

δG

δE
· δF
δB

)
dx.

The Casimir invariants of this bracket are

CE =

∫
hE(x)(divE− ρ) dx, CB =

∫
hB(x) divB dx,

which are equivalent to two of the Maxwell’s equations.

A momentum map is the total momentum:

P =
∑
s

∫
msvfs dx dv +

∫
E×B dx.

Geometric discretisation of Vlasov-Maxwell

• Maxwell’s equation are discretized in the framework of Finite Element Exterior Calculus
(FEEC), based on a continuous and discrete complex involving compatible Finite Element
spaces:

grad curl div
H1(Ω) −→ H(curl,Ω) −→ H(div,Ω) −→ L2(Ω)
↓ Π0 ↓ Π1 ↓ Π2 ↓ Π3

grad curl div
V0 −→ V1 −→ V2 −→ V3

- curl grad = 0 and div curl = 0 exactly preserved at discrete level

- Commuting diagram is an essential piece:

Π1gradψ = gradΠ0ψ, Π2curlA = curlΠ1A, Π3divA = divΠ2A.

• The Vlasov equation is discretized with a Particle in Cell method (PIC):

fh(x,v, t) =

Np∑
p=1

wpδ(x− xp(t))δ(v − vp(t)).

• Plugging these approximations in the Poisson bracket and the hamiltonian a Finite Di-
mensional Poisson bracket and Hamiltonian are obtained.

• Time discretisation based on Hamiltonian splitting or Discrete Gradient method.

• Implemented with spline Finite Elements in arbitrary curvilinear coordinates.

Adding the collision operator

• Vlasov-Maxwell-Landau kinetic model

–Conserves energy H = m
2

∫
fv2dxdv + ε0

2

∫
E2dx + 1

2µ0

∫
B2dx

–Dissipates entropy S =
∫
f ln fdxdv

• Fits into the metriplectic framework, involving a Hamiltonian and a dissipative part

d

dt
F = {F ,H} + (F ,S)

• The metriplectic bracket of the Vlasov-Maxwell-Landau system preserves mass, momen-
tum, total energy, the divergence constraints on E and B, and satisfies an H-theorem
(monotonic dissipation of entropy, unique equilibrium state)

• many systems in plasma physics (e.g., XMHD, kinetic, hybrid) possess a similar structure
consisting of a Hamiltonian part {·, ·} and an entropy-dissipating part (·, ·).

• discretisation of the brackets instead of the dynamical equation guarantees these proper-
ties at the discrete level for different numerical methods (FEM, DG, PIC, ...)

Nonlinear Landau Collision Operator

• FEM, DG, PIC discretizations of the metric
bracket formulation of the Landau operator

• temporal discretisation via discrete gradient
methods

• exact conservation of mass, momentum, energy
and discrete H-theorem

• Outlook:

–PIC and DG discretisation of the full 6D
Vlasov-Maxwell-Landau system

– low-rank tensor approximation for more effi-
cient computations


