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The Vlasov—Maxwell System

= the Vlasov equation determines the evolution of the distribution function £(¢, z, v) of some particle
species s with charge e, in a collisionless plasma

ofs ofs Ofs _
E(t’ T, V) + esv- %(t, z, v) + (E(t7 x) + es v X B(t, x)) rm (t,z,v) =0
= Maxwell's equations for electric field £ and magnetic induction B
Eﬁ(t; 3:) =V X B(ta 7:) - ‘](t 33), V. E(ta T) = —/)(t, '7:)’
By(t, 1) = =V x E(t, x), V- B(t,z) =0

= definitions of charge density p and current density J in terms of f

p(t,x) = Z es/ dv (1, z, v), J(t, ) = Z es / dv (L, 2, v) v

= geometric structures of the Vlasov—Maxwell System
= the spaces of electrodynamics have a deRham complex structure
= Poisson structure (antisymmetric bracket satisfying the Jacobi identity)
= variational structure (Hamilton's action principle)

= energy, momentum and charge conservation (Noether theorem)
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Discrete Differential Forms



Differential Forms

= the mathematical language of vector analysis is too limited to provide an intuitive description of
electrodynamics (only two types of objects: scalars and vectors)

Quantity Symbol Unit  Integration along
scalar electric potential 10} \% 0D point

electric field intensity E V/m 1D path
magnetic flux density B (Vs)/m? 2D surface
charge density p (As)/m® 3D volume

= alternative: calculus of differential forms (subset of tensor analysis)
= in three dimensional space €2: four types of forms

= 0-forms A: scalar quantities (functions)

= 1-forms A': vectorial quantities (line elements)

= 2-forms A?: vectorial quantities (surface elements)

= 3-forms A®: scalar quantities (volume elements)

= electromagnetic fields in Maxwell’s equations as differential forms

b€ A°(Q), A, Ee AY(Q), B, Je A2(Q), p e A3(Q)



Maxwell’s Equations and the deRham Complex

= the spaces of Maxwell’s equations form a deRham complex

R — H(Q) 4% HewlQ) 2N Hdiv,Q) 2% 12(Q) — 0

in terms of differential forms and the exterior derivative d : A¥ — AF+1

R - A°Q) & AYQ) & A2 & A3 — o
= complex: Im{d: A*! — A¥} C Ker{d: A¥ — AF+1}

(k — 1)-forms k-forms (k + 1)-forms

= in general dod = 0, in particular curlgrad = 0 and divcurl = 0



Discrete deRham Complex

= discrete deRham complex

R - AQ) & AlQ) & A2(Q) & A3(Q) — 0

o Ll |2 L
d d d
R — ANQ) = ANQ) = A(Q) = AQ) — 0
= discrete spaces Aﬁ C A are finite element spaces of differential forms with degrees of freedom in RV

= compatibility: projections ﬂﬁ commute with exterior derivative d

= by translating geometrical and topological tools, which are used in the analysis of stability and
well-posedness of PDEs, to the discrete level one can show that the complex property and compatibility

guarantee stability!

lAmoId‘ Falk, Winther: Finite Element Exterior Calculus, Homological Techniques, and Applications. Acta Numerica 15, 1-155, 2006

Arnold, Falk, Winther: Finite Element Exterior Calculus: From Hodge Theory to Numerical Stability, Bulletin of the AMS 47, 281-354, 2010



Spline Differential Forms

= the ¢-th basic splines (B-spline) of degree p is recursively defined by

, y— p, _ 1 S jy g )
() = uP(@) 1) + (1 — vy (0)) ST (), a) = {0 » % 3j41)
where
|
() = Tiyp = Tj

and the knot vector Z = {;}1<i< N4y iS @ non-decreasing sequence of points
= the derivative of a spline of degree p can be computed as the difference of two splines of degree p — 1

Lot ( S0 )

Titp =L Titp+l — Tjtl




Spline Differential Forms

= zero-form basis = two-form basis
: SP(a) S (a?) S (o
A%(Q):span{sq;(xl) .j(f)smk(gﬁ)} AZ(Q):Span{ i () 5 E)) k() |
= one-form basis 0
0
gfil(xl)sp(fz)sp(fi) -1 =il
Amzspan{ : T TG LD |
0 0 }
0
)
FEOF S ] () ) )
0 = three-form basis
0
SP(at) SP(a?) S (aP) } AF(€) = span {Sf_l(fﬂl) S7H(P) S5 (=) }



Discrete Poisson Brackets



Hamiltonian Systems and Poisson Brackets

» let u(t,7) = (u!, u?, ..., u™)7 be the field variables of some system of partial differential equations,
defined over the space ) with coordinates z = (i, v)
= let F denote an arbitrary functional of the field variables u
= if the system is Hamiltonian the evolution of F is given by
o —Fn
= 7 is the Hamiltonian functional, usually the total energy of the system
= the Poisson bracket {-,-} is an bilinear, anti-symmetric bracket of the form

OF . . 0G
F — Y
{ 39}_ 6u1\7 (U) 5u7d2
Q

where F and G are functionals of u and §F/du’ is the functional derivative

5F
e=0 n / oul vidz
Q

d 1 7 7 m
a}'[u Sy U F €V, U ]




Hamiltonian Systems and Poisson Brackets

= J(u) is an anti-self-adjoint operator, which has the property that
- ajij(u) Ik 8~7jk(u) 1 ajki(u) U _
Z < 50l T (u) + (u) + —odl J(u) ) =0

for 1 < 4,4,k < m, ensuring that the bracket {-, -} satisfies the Jacobi identity

oul
=1

{7, L7+ {G. HEL FH+ {{”, 716} =0
for arbitrary functionals F,G,H of u

= apart from that, J(u) is not required to be of any particular form and is allowed to depend on the fields
w in an arbitrarily complicated way (nonlinear, differential and integral operators)

= if J(u) has a non-empty nullspace, there exist so-called Casimir invariants, that is functionals C for
which {F,C} = 0 for all functionals F

= if the Hamiltonian is constant along the flow of some functional @, i.e., {H,®} =0, then ® is a
momentum map that is preserved by the flow of H (Noether's theorem)



Morrison—Marsden—\Weinstein Bracket

= infinite dimensional fields f, E, B

= Hamiltonian: functional of £, E, B (sum of the kinetic energy of the particles, the electrostatic field
energy and the magnetic field energy)

H= %/.|U‘2f(x,v)dxdv+%/(|E(I)‘2+|B(x)‘2)dr

= Vlasov—Maxwell noncanonical Hamiltonian structure

5F G 9 6F G 006G OF
(F.G}If.E, B = /f[5f 6f]dd+/f<av5f-§E r 6E>ddv

0 6]-" 0 59 6]: 0G 4G oF
= time evolution of any functional F[f, E, B]

d
Ef}-[ﬂE’ Bl ={F,H}



Morrison—Marsden—\Weinstein Bracket

= infinite dimensional fields f, £, B — finite-dimensional representation f,, Ej, Bj

= Hamiltonian: functional of £, E, B (sum of the kinetic energy of the particles, the electrostatic field
energy and the magnetic field energy) — discretisation of functionals

M= %/sz(x, v)dxdv—l—%/<|E(a:)\2+|B(x)\2>dx

= Vlasov—Maxwell noncanonical Hamiltonian structure — discrete functional derivatives

6]-" g 0 0F 59 0 59 oF

0 0F 046G oF 0G  6G v
B |=——x——= | d: . — | dz
+/f <8v6f x8v§f> d”d”/(&E VX5B " B VX(SB) de
= time evolution of any functional F[f, E, B] — time discretisation: splitting methods, integral
preserving methods

d
%‘F[{,E,B} ={F,H}



Discretisation of the Fields

= particle-like distribution function for N, particles labeled by a,

Ny

Sz, v, t) = Z wa 6 (2 — 74(1)) 6(v — va(1)),

a=1
with weights w,, particle positions x, and particle velocities v,

= 1-form and 2-form spline basis functions (vector-valued)

AL (z) A2l (z)
AL(z) = | AL2(g) |, AZ(z) = | A22(2)
AL (2) AZ3(2)

= semi-discrete electric field Ej, and magnetic field By,

Eat) =S ealt) AL(2), Butr) =S ba(t) A2(2)

with coefficient vectors e and b



Discretisation of the Distribution Function

= functionals of the distribution function, F[f], restricted to particle-like distribution functions,
Nﬁ

Sz, v, t) = Z we 6(z — 24(2)) 0(v— va(1)),

a=1

become functions of the particle phasespace trajectories,

Flfn] = F(zq, va)
= replace functional derivatives with partial derivatives

oF 0 OF oF 0 6F

= Wy —— d — Wy — =
Oza 40z of an Do 00 of

(wmva) ("I;aﬂ’a)

= rewrite kinetic bracket as semi-discrete particle bracket

§F &G 80F 848G 8F 006G
/f{éf 5f} drdv= Zw"(&xéf dvf  duof améf)

Z oF 9G 9G OF
- wo \Oza Ovy Oz Ovg

(2asva)




Discretisation of the Electrodynamic Fields

= semi-discrete electric field Ej, and magnetic field Bj,

En(z) = eal(t) Aa(), Bi(x) =) ba(t) A%(2)
= functionals F[E] and F[B], restricted to the semi-discrete fields Ej, and By, become functions F(e) and
F(b) of the finite element coefficients
FEp] = Fle), F[Bn] = F(b)
= replace functional derivatives of F[E}| and F[B}] with partial derivatives of F(e) and F(b)

SF|E), OF(e i 1 0F|By, OF(b 1 9
5[3}] 22 ae(a)ml Jup A (2), 5[3}} :gﬁ: az;(a>(M2 Jas 452

with mass matrices

(My)ap = / AL(2) Ab(2) dz; (My)as = / A2(2) A3 (2) da



Semi-Discrete Poisson Bracket

= semi-discrete Poisson bracket
oG 090G _,_,0F
F,GY4X,V,eb F - !
{F, Gl e b = 6X”dV X' " 9V

(35 oo (39) (25 o (29
+(§—§) M, M B(X, b) M (%)
+(58) e () - (&) o (59)

Mp)ua = MqWaq, (Mq)ua = (aWq

Q’\

Q>

= mass & charge matrices: M, = M, ® I3, M, = M, ® 13, (
= AY(X) is the 3N, x Ni matrix with generic term A}(z,) with 1 < a < N, 1 <i< Ny
= B(X, b) is the 3N, x 3N,, block diagonal matrix with generic block

0 AP (@a) =T ()

w(Za, 1) Z bi( —A7

A
Af"z(a:a) 7A2.’1(a:a) 0



Semi-Discrete Poisson System

= with discrete Hamiltonian
H=H(f En,Br) =3 VM, V+ 1 e Mie+ b Mab.

= semi-discrete equations of motion

dxzs
dt

X: {X, H}d =V, = Us,
dvs
dt

e={e H}q=M"(C M2b— A (X)TM, V), %:curlB—J,
9B
ot

V={V, Ha =M,V (A(X)e+B(X,b) V), = e,(B(z,) + vs x B(g,)),

b:{va}d:*Cea = —curl &



Semi-Discrete Poisson System

= action of the discrete bracket on functions F and G of u= (X, V, e, b) "
{F,G}4=DF" J(u)DG

= Poisson system: it = J(u) VH(u) with u= (X, V,e,b)T and

0 M1 0 0
-Vt MyIMB(X, b)) Mt MM A (XML 0
) = 0 —MI'ANX)TM MY 0 MytCT
1 q°'p i
0 0 —CcMpt 0

= Jis anti-symmetric and satisfies the Jacobi identity if
div Bp(z,t) =0 and curl A' = CTA?
— both conditions are satisfied due to the discrete deRham complex structure

— choosing initial conditions such that div By(z,0) = 0 we have div Bp,(x, t) = 0 for all times ¢



Casimir Invariants

= Casimir invariants: functionals C(f, E, B) which Poisson commute with every other functional G(f, E, B)
so that {C,G} =0

= integral of any real function A4 of each distribution function £

CH= / hs(fs) dzdv
= Gauss' law

CEz/hE(x)(divE—p) duz, G ' Mie=—A"(X) M1y,
= divergence-free property of the magnetic field (pseudo-Casimir)

Cp= / hp(z) div Bdz, Db(t) =0 if Db(0) =0

(hg and hp are arbitrary real functions of z)

— the semi-discrete system, satisfying the Jacobi identity and preserving all Casimir invariants, is a
Hamiltonian system of ODEs



Time Integration




Splitting Methods

= Hamiltonian splitting®
H= Hy, + Hy, + Hy, + Hg + Hp
with
Hy,=L1vin,v, Hi=1e™Mye, Hp=1b"M5b
= split semi-discrete Vlasov-Maxwell equations into five subsystems

u= {’l[, Hvi}d7 U= {ua HE}d7 U= {’LL, HB}d

= each subsystem can be solved exactly

t t
e () / o Mo chalan) =t / (u, Hy}adt,
JO JO

2 Crouselles, Einkemmer, Faou. Hamiltonian splitting for the Viasov-Maxwell equations. Journal of Computational Physics 283, 224-240, 2015
Qin, He, Zhang, Liu, Xiao, Wang. Comment on “Hamiltonian splitting for the Viasov—Maxwell equations”. arXiv:1504.07785, 2015

He, Qin, Sun, Xiao, Zhang, Liu. Hamiltonian integration methods for Vlasov—-Maxwell equations. arXiv:1505.06076, 2015.



Splitting Methods

= for the exact solution of the kinetic subsystems

t
() = Hy )gdt
1, v (uo) uo-&-/0 {u,Hy,}q 2x(h)

we have to compute line integrals exactly® (e.g. i=1)

A

X (h) = X3 (0) + hV4(0),

Va(h) = V3(0) *./o " 4 V(0) b(0) A2 (X(1), .

Vs(h) = V5(0) — /Oh dt V»(0) b(0) A*' (X(1)), o

D’he(h) =M 6(0) - /Oh thLl(X(t)) Mp V2 (O) Ox(O)

— solution is gauge invariant and charge conserving

S Cotprs (e dhh Gefloen, S e @ e g FEM-PIC schemes on general grids. Comptes Rendus Mécanique 342, 570-582, 2014

Squire, Qin, Tang. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme. Physics of Plasmas 19, 084501, 2012

Moon, Teixeira, Omelchenko. Exact charge-conserving scatter-gather algorithm for particle-in-cell simulations on unstructured grids. CPC 194, 43-53, 2015



Splitting Methods

= Hamiltonian splitting
H= HV1 —|—HV2—|—HV3—|—HE—|—HB

= the exact solution of each subsystem constitutes a Poisson map
= compositions of Poisson maps are themselves Poisson maps

= construction of Poisson structure preserving integrators by composition of exact solutions of the
subsystems

= first order time integrator: Lie-Trotter composition

V), = QnEO OB O PLhV, © Ph Vs © Ph, Vs

= second order time integrator: symmetric composition

Uy, = Ph/2,EC Ph/2,BC Ph/2, Vi © Ph/2,Va © Ph, V3 © Ph/2, Vs © Ph/2,Vy © Ph/2,BC Ph/2,E



Integral Preserving Methods

See Talk by Eric Sonnendriicker...



Summary and Outlook




Summary and Outlook

= discrete electrodynamics (fluid dynamics, magnetohydrodynamics, ...)
= discrete differential forms and discrete deRham complexes of compatible spaces:
splines, mixed finite elements, mimetic spectral elements, virtual elements

= exactly satisfy identities from vector calculus (curl grad = 0, div curl = 0)

= stability follows from exactness and compatibility of the finite element deRham complex

= discrete Poisson brackets

= Poisson structure is retained at the semi-discrete level

= gauge invariance, charge conservation, Casimir conservation

= construction of Poisson time integrators by Hamiltonian splitting methods

= construction of energy-preserving time integrators by discrete gradients (c.f. talk by Eric Sonnendriicker)
= ongoing and future work

= Eulerian discretisation, boundary conditions, geometry, delta-f, collisions, ...

= gyrokinetics, magnetohydrodynamics, kinetic-fluid hybrid models, ...

= metriplectic integrators for the Landau collision operator (arXiv:1707.01801, accepted by PoP)
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Discretisation of Functional Derivatives

= consider some functional F of some field f € H'(Q)

= the functional derivative of F with respect to f is defined by
d OF OF

&}-[f+eﬂ]‘€:o = <5J[75>L2 = gﬂ(z) dz

Q

where g is an element of the same space as f, that is g € H'(Q2), while the functional derivative 6.F /5 f
is an element of the dual space of H!(Q2), and (-, -) denotes the appropriate pairing

= consider a finite element approximation f, of # with respect to a basis ¢;

fultsd) = 3 Filt) @il 70 = (), ... fn@®) " €RY

= if we apply the functional F to f;, then F becomes a function F of the degrees of freedom f

]:V}J:F(f)



Discretisation of Functional Derivatives

= in order to discretise brackets, we need to replace functional derivatives like 0.7 /df with partial
derivative OF/0f

= require that the pairing be equal to some finite-dimensional equivalent
SF[f] OF N oF
(G m) =59 =X ae
5]( L2 8f 8fl

where g(t) = (g1(%), ..., gn(1)) "€ RV denotes the degrees of freedom of g,

N
=3 0t e

= denote the dual basis to ¢ = (¢1,.

~~7@N)Tby7p:(¢1a-~-71/)N)T
whwyzjmwwwW=% for
Q



Discretisation of Functional Derivatives

= in the dual basis, the functional derivative can be written as
N

5‘/?% Z a; 77[}7
=1
= choose g=(0,...,0,1,0,...,0)" with 1 at the i-th position and 0 everywhere else, so that g5 = ¢;,
we have
SF[f] a OF /OF
) = s Was i d = — = i
< 5][ 75} Lo /]z;ajq/)j()@(z) Z aﬂ 8_f g |RN
o =
and thus find that
OF 5F N oF
%= and therefore 6?1] = ; oF ¥i(2)
= express the dual basis ¥ in terms of the primal basis ¢ as
N N
5F [fn] OF
z) = ; i 05(2) so that 5 ”z:; of, & 0;(2)



Discretisation of Functional Derivatives

= determine the unknown coefficients a;; by the Ly inner product

N
(Wi 9R) s = / Z% oD on(d) =3 g [ oi(2) (d) da
=1}

= denoting by IM the mass matrix of the basis functions
Mix = /goj(z) vi(2) dz,
Q

and using (¢;, @) 2 = i, we obtain the relation

1=aM and thus a=M"1
so that
SF[h] <= OF
5fl =D 7 a7, Mg 5(2)-

7,j=1



Numerical Examples



Nonlinear Landau Damping

= numerical example: nonlinear Landau damping

2+ 13
f(z,v,t=0) = exp (— 1)12_:272> (1+ o cos(kz)),
th
Bg(ﬂ?, 3= O) = 0,
EQ(I, = O) = 0,

and E;(z,t=0) is computed from Poisson’s equation

= numerical parameters: splines of degree 3 and 2
z € [0,27/k), ve R At =0.05, n, = 32, n, = 100,000
= physical parameters:

Un = 1, k=10.5, a=0.5



Nonlinear Landau Damping

10t
v = —0.285609
100 /
Y2 =0.086603
101 \
B
<
£ 102
S
=
&5
&l
e 1073
104
-5
L 10 20 30 40 50
time
Integrator Y1 Y2
GEMPIC —0.286 +0.087
viVlasovlD —0.286 +0.085
Cheng & Knorr (1976) —0.281 +0.084
Nakamura & Yabe (1999) —0.280 | +0.085
Ayuso & Hajian (2012) —0.292 +0.086
Heath, Gamba, Morrison, Michler (2012) —0.287 +0.075
Cheng, Gamba, Morrison (2013) —0.291 | +0.086




Nonlinear Landau Damping

N A f\’”/’\’”f\’/\’(\’(\/\'/\'/\;'f\"
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Streaming Weibel Instability

= numerical example: streaming Weibel instability

1 1 % (’UQ — Vo 1)2 (’1)2 — Vo 2)2
=) = e _ 12 0L 1_ _ 27 2]
f(z,v,t=0) p— exp ( 22 ) ((5 exp ( 27 +(1—9¢)exp 27 ,
Bs(z,t=0) = Bsin(kz),

EQ(I,t: O) = 0,

and E;(z,t=0) is computed from Poisson’s equation

= numerical parameters: splines of degree 3 and 2
€ [0,27/k), v € R?, At =0.01, ng = 128, n, = 2,000, 000

= physical parameters:

0.1 1
Uph = 7 k=0.2, 8=-1073, vo1 = 0.5, v2 = —0.1, 5= G



Streaming Weibel Instability
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Streaming Weibel Instability
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2nd, 4 Lie 1.5E-8 2.0E-14
4th, 3 Strang 1.7E-10 9.4E-15
4th, 10 Lie 5.7E-13 1.0E-14
Boris 1.1E-7 5.8E-4
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