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The Vlasov–Maxwell System

• the Vlasov equation determines the evolution of the distribution function fs(t, x, v) of some particle
species s with charge es in a collisionless plasma

∂fs
∂t (t, x, v) + es v · ∂fs

∂x (t, x, v) +
(
E(t, x) + es v × B(t, x)

)
·
∂fs
∂v (t, x, v) = 0

• Maxwell’s equations for electric field E and magnetic induction B

Et(t, x) = ∇× B(t, x)− J(t, x), ∇ · E(t, x) = −ρ(t, x),
Bt(t, x) = −∇× E(t, x), ∇ · B(t, x) = 0

• definitions of charge density ρ and current density J in terms of f

ρ(t, x) =
∑

s
es

∫
dv fs(t, x, v), J(t, x) =

∑
s

es

∫
dv fs(t, x, v) v

• geometric structures of the Vlasov–Maxwell System
• the spaces of electrodynamics have a deRham complex structure
• Poisson structure (antisymmetric bracket satisfying the Jacobi identity)
• variational structure (Hamilton’s action principle)
• energy, momentum and charge conservation (Noether theorem)
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Discrete Differential Forms



Differential Forms

• the mathematical language of vector analysis is too limited to provide an intuitive description of
electrodynamics (only two types of objects: scalars and vectors)

Quantity Symbol Unit Integration along
scalar electric potential ϕ V 0D point
electric field intensity E V/m 1D path
magnetic flux density B (Vs)/m2 2D surface
charge density ρ (As)/m3 3D volume

• alternative: calculus of differential forms (subset of tensor analysis)
• in three dimensional space Ω: four types of forms

• 0-forms Λ0: scalar quantities (functions)
• 1-forms Λ1: vectorial quantities (line elements)
• 2-forms Λ2: vectorial quantities (surface elements)
• 3-forms Λ3: scalar quantities (volume elements)

• electromagnetic fields in Maxwell’s equations as differential forms

ϕ ∈ Λ0(Ω), A,E ∈ Λ1(Ω), B, J ∈ Λ2(Ω), ρ ∈ Λ3(Ω)



Maxwell’s Equations and the deRham Complex

• the spaces of Maxwell’s equations form a deRham complex

R → H1(Ω)
grad−−−→ H(curl,Ω) curl−−→ H(div,Ω) div−−→ L2(Ω) → 0

in terms of differential forms and the exterior derivative d : Λk → Λk+1

R → Λ0(Ω)
d−→ Λ1(Ω)

d−→ Λ2(Ω)
d−→ Λ3(Ω) → 0

• complex: Im {d : Λk−1 → Λk} ⊆ Ker {d : Λk → Λk+1}

d d

(k − 1)-forms k-forms (k + 1)-forms

Im d Im d
Ker d Ker d

• in general d ◦ d = 0, in particular curl grad = 0 and div curl = 0



Discrete deRham Complex

• discrete deRham complex

R → Λ0(Ω)
d−→ Λ1(Ω)

d−→ Λ2(Ω)
d−→ Λ3(Ω) → 0

↓ π0
h ↓ π1

h ↓ π2
h ↓ π3

h

R → Λ0
h(Ω)

d−→ Λ1
h(Ω)

d−→ Λ2
h(Ω)

d−→ Λ3
h(Ω) → 0

• discrete spaces Λk
h ⊂ Λk are finite element spaces of differential forms with degrees of freedom in RNk

• compatibility: projections πk
h commute with exterior derivative d

• by translating geometrical and topological tools, which are used in the analysis of stability and
well-posedness of PDEs, to the discrete level one can show that the complex property and compatibility
guarantee stability1

1Arnold, Falk, Winther: Finite Element Exterior Calculus, Homological Techniques, and Applications. Acta Numerica 15, 1–155, 2006.

Arnold, Falk, Winther: Finite Element Exterior Calculus: From Hodge Theory to Numerical Stability, Bulletin of the AMS 47, 281-354, 2010.



Spline Differential Forms

• the i-th basic splines (B-spline) of degree p is recursively defined by

Sp
j (x) = wp

j (x)Sp−1
j (x) + (1− wp

j+1(x))Sp−1
j+1 (x), S0

j (x) =
{
1 x ∈ [xj, xj+1),

0 else,

where

wp
j (x) =

x − xj
xj+p − xj

,

and the knot vector Ξ = {xi}1≤i≤N+p is a non-decreasing sequence of points

• the derivative of a spline of degree p can be computed as the difference of two splines of degree p − 1

d
dxSp

j (x) = p
( Sp−1

j (x)
xj+p − xj

−
Sp−1

j+1 (x)
xj+p+1 − xj+1

)



Spline Differential Forms

• zero-form basis

Λ0
h(Ω) = span

{
Sp

i (x1)Sp
j (x2)Sp

k(x
3)

}
• one-form basis

Λ1
h(Ω) = span

{Sp−1
i (x1)Sp

j (x2)Sp
k(x3)

0

0

 ,

 0

Sp
i (x1)Sp−1

j (x2)Sp
k(x3)

0

 ,

 0

0

Sp
i (x1)Sp

j (x2)Sp−1
k (x3)

}

• two-form basis

Λ2
h(Ω) = span

{Sp
i (x1)Sp−1

j (x2)Sp−1
k (x3)

0

0

 ,

 0

Sp−1
i (x1)Sp

j (x2)Sp−1
k (x3)

0

 ,

 0

0

Sp−1
i (x1)Sp−1

j (x2)Sp
k(x3)

}

• three-form basis

Λ3
h(Ω) = span

{
Sp−1

i (x1)Sp−1
j (x2)Sp−1

k (x3)
}



Discrete Poisson Brackets



Hamiltonian Systems and Poisson Brackets

• let u(t, x) = (u1, u2, ..., um)T be the field variables of some system of partial differential equations,
defined over the space Ω with coordinates z = (x, v)

• let F denote an arbitrary functional of the field variables u
• if the system is Hamiltonian the evolution of F is given by

dF
dt = {F ,H}

• H is the Hamiltonian functional, usually the total energy of the system
• the Poisson bracket {·, ·} is an bilinear, anti-symmetric bracket of the form

{F ,G} =

∫
Ω

δF
δui J

ij(u) δG
δuj dz

where F and G are functionals of u and δF/δui is the functional derivative
d
dϵF

[
u1, ..., ui + ϵvi, ..., um]∣∣∣

ϵ=0
=

∫
Ω

δF
δui vi dz



Hamiltonian Systems and Poisson Brackets

• J (u) is an anti-self-adjoint operator, which has the property that
m∑

l=1

(
∂J ij(u)
∂ul J lk(u) + ∂J jk(u)

∂ul J li(u) + ∂J ki(u)
∂ul J lj(u)

)
= 0

for 1 ≤ i, j, k ≤ m, ensuring that the bracket {·, ·} satisfies the Jacobi identity

{{F ,G},H}+ {{G,H},F}+ {{H,F},G} = 0

for arbitrary functionals F ,G,H of u

• apart from that, J (u) is not required to be of any particular form and is allowed to depend on the fields
u in an arbitrarily complicated way (nonlinear, differential and integral operators)

• if J (u) has a non-empty nullspace, there exist so-called Casimir invariants, that is functionals C for
which {F , C} = 0 for all functionals F

• if the Hamiltonian is constant along the flow of some functional Φ, i.e., {H,Φ} = 0, then Φ is a
momentum map that is preserved by the flow of H (Noether’s theorem)



Morrison–Marsden–Weinstein Bracket

• infinite dimensional fields f , E, B

• Hamiltonian: functional of f ,E,B (sum of the kinetic energy of the particles, the electrostatic field
energy and the magnetic field energy)

H =
1

2

∫
|v|2 f (x, v)dx dv + 1

2

∫ (
|E(x)|2 + |B(x)|2

)
dx

• Vlasov–Maxwell noncanonical Hamiltonian structure

{F ,G}[f ,E,B] =

∫
f

[
δF
δf
,
δG
δf

]
dx dv +

∫
f

(
∂

∂v
δF
δf

· δG
δE − ∂

∂v
δG
δf

· δF
δE

)
dx dv

+

∫
f B ·

(
∂

∂v
δF
δf

× ∂

∂v
δG
δf

)
dx dv +

∫ (
δF
δE · ∇ × δG

δB − δG
δE · ∇ × δF

δB

)
dx

• time evolution of any functional F [f ,E,B]

d
dtF [f ,E,B] = {F ,H}



Morrison–Marsden–Weinstein Bracket

• infinite dimensional fields f , E, B � finite-dimensional representation fh, Eh, Bh

• Hamiltonian: functional of f ,E,B (sum of the kinetic energy of the particles, the electrostatic field
energy and the magnetic field energy) � discretisation of functionals

H =
1

2

∫
|v|2 f (x, v)dx dv + 1

2

∫ (
|E(x)|2 + |B(x)|2

)
dx

• Vlasov–Maxwell noncanonical Hamiltonian structure � discrete functional derivatives

{F ,G}[f ,E,B] =

∫
f

[
δF
δf
,
δG
δf

]
dx dv +

∫
f

(
∂

∂v
δF
δf

· δG
δE − ∂

∂v
δG
δf

· δF
δE

)
dx dv

+

∫
f B ·

(
∂

∂v
δF
δf

× ∂

∂v
δG
δf

)
dx dv +

∫ (
δF
δE · ∇ × δG

δB − δG
δE · ∇ × δF

δB

)
dx

• time evolution of any functional F [f ,E,B] � time discretisation: splitting methods, integral
preserving methods

d
dtF [f ,E,B] = {F ,H}



Discretisation of the Fields

• particle-like distribution function for Np particles labeled by a,

fh(x, v, t) =
Np∑

a=1

wa δ
(
x − xa(t)

)
δ
(
v − va(t)

)
,

with weights wa, particle positions xa and particle velocities va

• 1-form and 2-form spline basis functions (vector-valued)

Λ1
α(x) =


Λ1,1
α (x)

Λ1,2
α (x)

Λ1,3
α (x)

 , Λ2
α(x) =


Λ2,1
α (x)

Λ2,2
α (x)

Λ2,3
α (x)


• semi-discrete electric field Eh and magnetic field Bh

Eh(t, x) =
Ndof∑
α=1

eα(t) Λ1
α(x), Bh(t, x) =

Ndof∑
α=1

bα(t) Λ2
α(x)

with coefficient vectors e and b



Discretisation of the Distribution Function

• functionals of the distribution function, F [f ], restricted to particle-like distribution functions,

fh(x, v, t) =
Np∑

a=1

wa δ
(
x − xa(t)

)
δ
(
v − va(t)

)
,

become functions of the particle phasespace trajectories,

F [fh] = F(xa, va)

• replace functional derivatives with partial derivatives
∂F
∂xa

= wa
∂

∂x
δF
δf

∣∣∣∣
(xa,va)

and ∂F
∂va

= wa
∂

∂v
δF
δf

∣∣∣∣
(xa,va)

• rewrite kinetic bracket as semi-discrete particle bracket∫
f

[
δF
δf
,
δG
δf

]
dx dv =

∑
a

wa

(
∂

∂x
δF
δf

· ∂
∂v
δG
δf

− ∂

∂v
δF
δf

· ∂
∂x
δG
δf

)∣∣∣∣
(xa,va)

=
∑

a

1

wa

(
∂F
∂xa

· ∂G
∂va

− ∂G
∂xa

· ∂F
∂va

)



Discretisation of the Electrodynamic Fields

• semi-discrete electric field Eh and magnetic field Bh

Eh(x) =
∑
α

eα(t) Λ1
α(x), Bh(x) =

∑
α

bα(t) Λ2
α(x)

• functionals F [E] and F [B], restricted to the semi-discrete fields Eh and Bh, become functions F(e) and
F(b) of the finite element coefficients

F [Eh] = F(e), F [Bh] = F(b)

• replace functional derivatives of F [Eh] and F [Bh] with partial derivatives of F(e) and F(b)

δF [Eh]

δE =
∑
α,β

∂F(e)
∂eα

(M−1
1 )αβ Λ

1
β(x),

δF [Bh]

δB =
∑
α,β

∂F(b)
∂bα

(M−1
2 )αβ Λ

2
β(x)

with mass matrices

(M1)αβ =

∫
Λ1
α(x) Λ1

β(x)dx, (M2)αβ =

∫
Λ2
α(x) Λ2

β(x)dx



Semi-Discrete Poisson Bracket

• semi-discrete Poisson bracket

{F,G}d[X,V, e, b] = ∂F
∂XM−1

p
∂G
∂V − ∂G

∂XM−1
p

∂F
∂V

+

(
∂F
∂V

)⊤

M−1
p MqΛ

1(X)⊤M−1
1

(
∂G
∂e

)
−

(
∂F
∂e

)⊤

M−1
1 Λ1(X)MqM

−1
p

(
∂G
∂V

)
+

(
∂F
∂V

)⊤

M−1
p MqB(X, b)M−1

p

(
∂G
∂V

)
+

(
∂F
∂e

)⊤

M−1
1 C⊤

(
∂G
∂b

)
−

(
∂F
∂b

)⊤

CM−1
1

(
∂G
∂e

)
• mass & charge matrices: Mp = Mp ⊗ I3, Mq = Mq ⊗ I3, (Mp)aa = mawa, (Mq)aa = qawa

• Λ1(X) is the 3Np × N1 matrix with generic term Λ1
i (xa) with 1 ≤ a ≤ Np, 1 ≤ i ≤ N1

• B(X, b) is the 3Np × 3Np block diagonal matrix with generic block

B̂h(xa, t) =
N2∑
i=1

bi(t)

 0 Λ2,3
i (xa) −Λ2,2

i (xa)

−Λ2,3
i (xa) 0 Λ2,1

i (xa)

Λ2,2
i (xa) −Λ2,1

i (xa) 0





Semi-Discrete Poisson System

• with discrete Hamiltonian

H = H(fh,Eh,Bh) =
1
2

V⊤MpV + 1
2

e⊤M1e + 1
2

b⊤M2b.

• semi-discrete equations of motion

Ẋ = {X,H}d = V,
dxs

dt = vs,

V̇ = {V,H}d = M−1
p Mq

(
Λ1(X)e + B(X, b)V

)
,

dvs

dt = es
(
E(xs) + vs × B(xs)

)
,

ė = {e,H}d = M−1
1

(
C⊤M2b − Λ1(X)⊤MqV

)
,

∂E
∂t = curl B − J,

ḃ = {b,H}d = −Ce, ∂B
∂t = − curl E



Semi-Discrete Poisson System

• action of the discrete bracket on functions F and G of u = (X,V, e, b)⊤

{F,G}d = DF⊤J(u)DG

• Poisson system: u̇ = J(u)∇H(u) with u = (X,V, e, b)⊤ and

J(u) =


0 M−1

p 0 0

−M−1
p M−1

p MqB(X, b)M−1
p M−1

p MqΛ1(X)M−1
1 0

0 −M−1
1 Λ1(X)⊤MqM−1

p 0 M−1
1 C⊤

0 0 −CM−1
1 0


• J is anti-symmetric and satisfies the Jacobi identity if

div Bh(x, t) = 0 and curlΛ1 = C⊤Λ2

� both conditions are satisfied due to the discrete deRham complex structure� choosing initial conditions such that div Bh(x, 0) = 0 we have div Bh(x, t) = 0 for all times t



Casimir Invariants

• Casimir invariants: functionals C(f ,E,B) which Poisson commute with every other functional G(f ,E,B)

so that {C,G} = 0

• integral of any real function hs of each distribution function fs

Cs =

∫
hs(fs)dx dv

• Gauss’ law

CE =

∫
hE(x)

(
div E − ρ

)
dx, G⊤M1e = −Λ0(X)⊤Mq1Np

• divergence-free property of the magnetic field (pseudo-Casimir)

CB =

∫
hB(x) div B dx, Db(t) = 0 if Db(0) = 0

(hE and hB are arbitrary real functions of x)� the semi-discrete system, satisfying the Jacobi identity and preserving all Casimir invariants, is a
Hamiltonian system of ODEs



Time Integration



Splitting Methods

• Hamiltonian splitting2

H = HV1 + HV2 + HV3 + HE + HB

with

HVi =
1
2 VT

i MpVi, HE = 1
2 eTM1e, HB = 1

2 bTM2b

• split semi-discrete Vlasov-Maxwell equations into five subsystems

u̇ = {u,HVi}d, u̇ = {u,HE}d, u̇ = {u,HB}d

• each subsystem can be solved exactly

φt,E(u0) = u0 +

∫ t

0

{u,HE}ddt , φt,B(u0) = u0 +

∫ t

0

{u,HB}ddt , ...

2 Crouseilles, Einkemmer, Faou. Hamiltonian splitting for the Vlasov-Maxwell equations. Journal of Computational Physics 283, 224–240, 2015.

Qin, He, Zhang, Liu, Xiao, Wang. Comment on “Hamiltonian splitting for the Vlasov–Maxwell equations”. arXiv:1504.07785, 2015.

He, Qin, Sun, Xiao, Zhang, Liu. Hamiltonian integration methods for Vlasov–Maxwell equations. arXiv:1505.06076, 2015.



Splitting Methods
• for the exact solution of the kinetic subsystems

φt,Vi(u0) = u0 +

∫ t

0

{u,HVi}d dt

we have to compute line integrals exactly3 (e.g. i = 1)

X1(h) = X1(0) + hV1(0),

V2(h) = V2(0) +

∫ h

0

dt V3(0) b(0)Λ2,1(X(t)),

V3(h) = V3(0)−
∫ h

0

dt V2(0) b(0)Λ2,1(X(t)),

M1e(h) = M1e(0)−
∫ h

0

dtΛ1,1(X(t))MpV1(0)� solution is gauge invariant and charge conserving
3 Campos Pinto, Jund, Salmon, Sonnendrücker. Charge-conserving FEM-PIC schemes on general grids. Comptes Rendus Mécanique 342, 570–582, 2014.

Squire, Qin, Tang. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme. Physics of Plasmas 19, 084501, 2012.

Moon, Teixeira, Omelchenko. Exact charge-conserving scatter–gather algorithm for particle-in-cell simulations on unstructured grids. CPC 194, 43–53, 2015.

x(0)

x(h)



Splitting Methods

• Hamiltonian splitting

H = HV1
+ HV2

+ HV3
+ HE + HB

• the exact solution of each subsystem constitutes a Poisson map

• compositions of Poisson maps are themselves Poisson maps

• construction of Poisson structure preserving integrators by composition of exact solutions of the
subsystems

• first order time integrator: Lie-Trotter composition

Ψh = φh,E ◦ φh,B ◦ φh,V1 ◦ φh,V2 ◦ φh,V3

• second order time integrator: symmetric composition

Ψh = φh/2,E ◦ φh/2,B ◦ φh/2,V1
◦ φh/2,V2

◦ φh,V3 ◦ φh/2,V2
◦ φh/2,V1

◦ φh/2,B ◦ φh/2,E



Integral Preserving Methods

See Talk by Eric Sonnendrücker...



Summary and Outlook



Summary and Outlook

• discrete electrodynamics (fluid dynamics, magnetohydrodynamics, ...)
• discrete differential forms and discrete deRham complexes of compatible spaces:

splines, mixed finite elements, mimetic spectral elements, virtual elements
• exactly satisfy identities from vector calculus (curl grad = 0, div curl = 0)
• stability follows from exactness and compatibility of the finite element deRham complex

• discrete Poisson brackets
• Poisson structure is retained at the semi-discrete level
• gauge invariance, charge conservation, Casimir conservation
• construction of Poisson time integrators by Hamiltonian splitting methods
• construction of energy-preserving time integrators by discrete gradients (c.f. talk by Eric Sonnendrücker)

• ongoing and future work
• Eulerian discretisation, boundary conditions, geometry, delta-f, collisions, ...
• gyrokinetics, magnetohydrodynamics, kinetic-fluid hybrid models, ...
• metriplectic integrators for the Landau collision operator (arXiv:1707.01801, accepted by PoP)



Appendix



Discretisation of Functional Derivatives

• consider some functional F of some field f ∈ H1(Ω)

• the functional derivative of F with respect to f is defined by

d
dϵF

[
f + ϵg

]∣∣∣
ϵ=0

=

⟨
δF
δf

, g

⟩
L2

=

∫
Ω

δF
δf

g(z) dz

where g is an element of the same space as f , that is g ∈ H1(Ω), while the functional derivative δF/δf

is an element of the dual space of H1(Ω), and ⟨· , ·⟩ denotes the appropriate pairing

• consider a finite element approximation fh of f with respect to a basis φi

fh(t, z) =
N∑

i=1

fi(t)φi(z), f(t) =
(
f1(t), . . . , fN(t)

)T ∈ RN

• if we apply the functional F to fh, then F becomes a function F of the degrees of freedom f

F [fh] = F(f)



Discretisation of Functional Derivatives

• in order to discretise brackets, we need to replace functional derivatives like δF/δf with partial
derivative ∂F/∂f

• require that the pairing be equal to some finite-dimensional equivalent⟨
δF [fh]

δf
, gh

⟩
L2

=

⟨
∂F
∂f , g

⟩
RN

=

N∑
i=1

∂F
∂fi

gi

where g(t) =
(
g1(t), . . . , gN(t)

)T ∈ RN denotes the degrees of freedom of gh

gh(t, z) =
N∑

i=1

gi(t)φi(z)

• denote the dual basis to φ = (φ1, . . . , φN)
T by ψ = (ψ1, . . . , ψN)

T

⟨ψi , φj⟩L2 =

∫
Ω

ψi(z)φj(z) dz = δij for 1 ≤ i, j ≤ N



Discretisation of Functional Derivatives

• in the dual basis, the functional derivative can be written as

δF [fh]

δf
=

N∑
i=1

ai ψi(z)

• choose g = (0, . . . , 0, 1, 0, . . . , 0)⊤ with 1 at the i-th position and 0 everywhere else, so that gh = φi,
we have⟨

δF [fh]

δf
, gh

⟩
L2

=

∫
Ω

N∑
j=1

aj ψj(z)φi(z) dz = ∂F
∂fi

=

⟨
∂F
∂f , g

⟩
RN

and thus find that

ai =
∂F
∂fi

and therefore δF [fh]

δf
=

N∑
i=1

∂F
∂fi

ψi(z)

• express the dual basis ψ in terms of the primal basis φ as

ψi(z) =
N∑

j=1

αij φj(z) so that δF [fh]

δf
=

N∑
i,j=1

∂F
∂fi

αij φj(z)



Discretisation of Functional Derivatives

• determine the unknown coefficients αij by the L2 inner product

⟨ψi , φk⟩L2 =

∫
Ω

N∑
j=1

αij φj(z)φk(z) dz =
N∑

j=1

αij

∫
Ω

φj(z)φk(z) dz.

• denoting by M the mass matrix of the basis functions φ

Mjk =

∫
Ω

φj(z)φk(z) dz,

and using ⟨ψi , φk⟩L2 = δik, we obtain the relation

1 = αM and thus α = M−1

so that

δF [fh]

δf
=

N∑
i,j=1

∂F
∂fi

(M−1)ij φj(z).



Numerical Examples



Nonlinear Landau Damping

• numerical example: nonlinear Landau damping

f (x, v, t = 0) = exp
(
−v21 + v22

2v2th

) (
1 + α cos(kx)

)
,

B3(x, t = 0) = 0,

E2(x, t = 0) = 0,

and E1(x, t = 0) is computed from Poisson’s equation

• numerical parameters: splines of degree 3 and 2

x ∈ [0, 2π/k), v ∈ R2, ∆t = 0.05, nx = 32, np = 100, 000

• physical parameters:

vth = 1, k = 0.5, α = 0.5



Nonlinear Landau Damping
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GEMPIC −0.286 +0.087
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Cheng & Knorr (1976) −0.281 +0.084

Nakamura & Yabe (1999) −0.280 +0.085

Ayuso & Hajian (2012) −0.292 +0.086

Heath, Gamba, Morrison, Michler (2012) −0.287 +0.075

Cheng, Gamba, Morrison (2013) −0.291 +0.086



Nonlinear Landau Damping
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Streaming Weibel Instability

• numerical example: streaming Weibel instability

f (x, v, t = 0) =
1

πvth
exp

(
− 1

2

v21
v2th

)(
δ exp

(
− (v2 − v0,1)2

2v2th

)
+ (1− δ) exp

(
− (v2 − v0,2)2

2v2th

))
,

B3(x, t = 0) = β sin(kx),
E2(x, t = 0) = 0,

and E1(x, t = 0) is computed from Poisson’s equation

• numerical parameters: splines of degree 3 and 2

x ∈ [0, 2π/k), v ∈ R2, ∆t = 0.01, nx = 128, np = 2, 000, 000

• physical parameters:

vth =
0.1√
2
, k = 0.2, β = −10−3, v0,1 = 0.5, v0,2 = −0.1, δ =

1
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Streaming Weibel Instability
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Streaming Weibel Instability
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