

GEMPIC: Geometric ElectroMagnetic Particle-in-Cell Methods for the Vlasov-Maxwell System

Michael Kraus^{1,2,3} (michael.kraus@ipp.mpg.de)

In collaboration with Katharina Kormann^{1,2}, Philip Morrison⁴ and Eric Sonnendrücker^{1,2}

- ¹ Max-Planck-Institut für Plasmaphysik
- ² Technische Universität München, Zentrum Mathematik
- $^{\rm 3}$ Waseda University, School of Science and Engineering
- $^{\rm 4}$ University of Texas at Austin, Institute for Fusion Studies

The Vlasov–Maxwell System

• the Vlasov equation determines the evolution of the distribution function $f_s(t, x, v)$ of some particle species s with charge e_s in a collisionless plasma

$$\frac{\partial f_s}{\partial t}(t, x, v) + e_s v \cdot \frac{\partial f_s}{\partial x}(t, x, v) + \left(E(t, x) + e_s v \times B(t, x)\right) \cdot \frac{\partial f_s}{\partial v}(t, x, v) = 0$$

Maxwell's equations for electric field E and magnetic induction B

$$E_t(t, x) = \nabla \times B(t, x) - J(t, x), \qquad \nabla \cdot E(t, x) = -\rho(t, x),$$

$$B_t(t, x) = -\nabla \times E(t, x), \qquad \nabla \cdot B(t, x) = 0$$

- definitions of charge density ρ and current density J in terms of f

$$\rho(t,x) = \sum_{s} e_s \int dv f_s(t,x,v), \qquad \qquad J(t,x) = \sum_{s} e_s \int dv f_s(t,x,v) v$$

- geometric structures of the Vlasov–Maxwell System
 - the spaces of electrodynamics have a deRham complex structure
 - Poisson structure (antisymmetric bracket satisfying the Jacobi identity)
 - variational structure (Hamilton's action principle)
 - energy, momentum and charge conservation (Noether theorem)

1. Discrete Differential Forms

2. Discrete Poisson Brackets

3. Time Integration

4. Summary and Outlook

Discrete Differential Forms

 the mathematical language of vector analysis is too limited to provide an intuitive description of electrodynamics (only two types of objects: scalars and vectors)

Quantity	Symbol	Unit	Integration along
scalar electric potential	ϕ	V	0D point
electric field intensity	E	V/m	1D path
magnetic flux density	B	$(Vs)/m^2$	2D surface
charge density	ρ	$(As)/m^3$	3D volume

- alternative: calculus of differential forms (subset of tensor analysis)
- in three dimensional space $\Omega :$ four types of forms
 - 0-forms Λ^0 : scalar quantities (functions)
 - 1-forms Λ^1 : vectorial quantities (line elements)
 - 2-forms Λ^2 : vectorial quantities (surface elements)
 - 3-forms Λ^3 : scalar quantities (volume elements)
- electromagnetic fields in Maxwell's equations as differential forms

 $\phi \in \Lambda^0(\Omega), \qquad A, E \in \Lambda^1(\Omega), \qquad B, J \in \Lambda^2(\Omega), \qquad \rho \in \Lambda^3(\Omega)$

Maxwell's Equations and the deRham Complex

• the spaces of Maxwell's equations form a deRham complex

$$\mathbb{R} \to H^1(\Omega) \xrightarrow{\text{grad}} H(\text{curl}, \Omega) \xrightarrow{\text{curl}} H(\text{div}, \Omega) \xrightarrow{\text{div}} L^2(\Omega) \to 0$$

in terms of differential forms and the exterior derivative $\mathsf{d}:\Lambda^k\to\Lambda^{k+1}$

$$\mathbb{R} \ \to \ \Lambda^0(\Omega) \ \stackrel{\mathrm{d}}{\to} \ \Lambda^1(\Omega) \ \stackrel{\mathrm{d}}{\to} \ \Lambda^2(\Omega) \ \stackrel{\mathrm{d}}{\to} \ \Lambda^3(\Omega) \ \to \ 0$$

• complex: $\operatorname{Im} \{ \mathsf{d} : \Lambda^{k-1} \to \Lambda^k \} \subseteq \operatorname{Ker} \{ \mathsf{d} : \Lambda^k \to \Lambda^{k+1} \}$

• in general $d \circ d = 0$, in particular $\operatorname{curl} \operatorname{grad} = 0$ and $\operatorname{div} \operatorname{curl} = 0$

discrete deRham complex

$$\begin{split} \mathbb{R} &\to \Lambda^{0}(\Omega) \xrightarrow{\mathsf{d}} \Lambda^{1}(\Omega) \xrightarrow{\mathsf{d}} \Lambda^{2}(\Omega) \xrightarrow{\mathsf{d}} \Lambda^{3}(\Omega) \to 0 \\ &\downarrow \pi_{h}^{0} &\downarrow \pi_{h}^{1} &\downarrow \pi_{h}^{2} &\downarrow \pi_{h}^{3} \\ \mathbb{R} &\to \Lambda_{h}^{0}(\Omega) \xrightarrow{\mathsf{d}} \Lambda_{h}^{1}(\Omega) \xrightarrow{\mathsf{d}} \Lambda_{h}^{2}(\Omega) \xrightarrow{\mathsf{d}} \Lambda_{h}^{3}(\Omega) \to 0 \end{split}$$

- discrete spaces $\Lambda_h^k \subset \Lambda^k$ are finite element spaces of differential forms with degrees of freedom in \mathbb{R}^{N_k}
- compatibility: projections π_h^k commute with exterior derivative d
- by translating geometrical and topological tools, which are used in the analysis of stability and well-posedness of PDEs, to the discrete level one can show that the complex property and compatibility guarantee stability¹

¹Arnold, Falk, Winther: Finite Element Exterior Calculus, Homological Techniques, and Applications. Acta Numerica 15, 1–155, 2006.

Arnold, Falk, Winther: Finite Element Exterior Calculus: From Hodge Theory to Numerical Stability, Bulletin of the AMS 47, 281-354, 2010.

Spline Differential Forms

• the i-th basic splines (B-spline) of degree p is recursively defined by

$$S_{j}^{p}(x) = w_{j}^{p}(x) S_{j}^{p-1}(x) + (1 - w_{j+1}^{p}(x)) S_{j+1}^{p-1}(x), \qquad S_{j}^{0}(x) = \begin{cases} 1 & x \in [x_{j}, x_{j+1}), \\ 0 & \text{else}, \end{cases}$$

where

$$w_j^p(x) = \frac{x - x_j}{x_{j+p} - x_j},$$

and the knot vector $\Xi=\{x_i\}_{1\leq i\leq N+p}$ is a non-decreasing sequence of points

- the derivative of a spline of degree p can be computed as the difference of two splines of degree p-1

$$\frac{\mathrm{d}}{\mathrm{d}x}S_{j}^{p}(x) = p\left(\frac{S_{j}^{p-1}(x)}{x_{j+p} - x_{j}} - \frac{S_{j+1}^{p-1}(x)}{x_{j+p+1} - x_{j+1}}\right)$$

Spline Differential Forms

zero-form basis

$$\Lambda_h^0(\Omega) = \operatorname{span}\left\{S_i^p(x^1) \, S_j^p(x^2) \, S_k^p(x^3)\right\}$$

one-form basis

$$\begin{split} \Lambda_h^1(\Omega) &= \operatorname{span} \left\{ \begin{pmatrix} S_i^{p-1}(x^1) \, S_j^p(x^2) \, S_k^p(x^3) \\ 0 \\ 0 \end{pmatrix}, \\ \begin{pmatrix} 0 \\ S_i^p(x^1) \, S_j^{p-1}(x^2) \, S_k^p(x^3) \\ 0 \\ \end{pmatrix}, \\ \begin{pmatrix} 0 \\ 0 \\ S_i^p(x^1) \, S_j^p(x^2) \, S_k^{p-1}(x^3) \end{pmatrix} \right\} \end{split}$$

two-form basis

 $\Lambda_h^2($

$$\Omega) = \operatorname{span} \left\{ \begin{pmatrix} S_i^p(x^1) \, S_j^{p-1}(x^2) \, S_k^{p-1}(x^3) \\ 0 \\ 0 \end{pmatrix}, \\ \begin{pmatrix} 0 \\ S_i^{p-1}(x^1) \, S_j^p(x^2) \, S_k^{p-1}(x^3) \\ 0 \\ \end{pmatrix}, \\ \begin{pmatrix} 0 \\ S_i^{p-1}(x^1) \, S_j^{p-1}(x^2) \, S_k^p(x^3) \end{pmatrix} \right\}$$

three-form basis

$$\Lambda_h^3(\Omega) = \operatorname{span}\left\{S_i^{p-1}(x^1) S_j^{p-1}(x^2) S_k^{p-1}(x^3)\right\}$$

Discrete Poisson Brackets

Hamiltonian Systems and Poisson Brackets

- let $u(t, x) = (u^1, u^2, ..., u^m)^T$ be the field variables of some system of partial differential equations, defined over the space Ω with coordinates z = (x, v)
- let ${\mathcal F}$ denote an arbitrary functional of the field variables \boldsymbol{u}
- if the system is Hamiltonian the evolution of \mathcal{F} is given by

$$\frac{d\mathcal{F}}{dt} = \{\mathcal{F}, \mathcal{H}\}$$

- $\ensuremath{\mathcal{H}}$ is the Hamiltonian functional, usually the total energy of the system
- the Poisson bracket $\{\cdot,\cdot\}$ is an bilinear, anti-symmetric bracket of the form

$$\{\mathcal{F},\mathcal{G}\} = \int\limits_{\Omega} \frac{\delta \mathcal{F}}{\delta u^i} \mathcal{J}^{ij}(u) \frac{\delta \mathcal{G}}{\delta u^j} dz$$

where ${\cal F}$ and ${\cal G}$ are functionals of u and $\delta {\cal F}/\delta u^i$ is the functional derivative

$$\frac{d}{d\epsilon} \mathcal{F}[u^1, ..., u^i + \epsilon v^i, ..., u^m]\Big|_{\epsilon=0} = \int_{\Omega} \frac{\delta \mathcal{F}}{\delta u^i} v^i \, \mathrm{d}z$$

Hamiltonian Systems and Poisson Brackets

- $\mathcal{J}(\mathit{u})$ is an anti-self-adjoint operator, which has the property that

$$\sum_{l=1}^{m} \left(\frac{\partial \mathcal{J}^{ij}(u)}{\partial u^{l}} \mathcal{J}^{lk}(u) + \frac{\partial \mathcal{J}^{jk}(u)}{\partial u^{l}} \mathcal{J}^{li}(u) + \frac{\partial \mathcal{J}^{ki}(u)}{\partial u^{l}} \mathcal{J}^{lj}(u) \right) = 0$$

for $1 \leq i,j,k \leq m$, ensuring that the bracket $\{\cdot,\cdot\}$ satisfies the Jacobi identity

$$\{\{\mathcal{F},\mathcal{G}\},\mathcal{H}\}+\{\{\mathcal{G},\mathcal{H}\},\mathcal{F}\}+\{\{\mathcal{H},\mathcal{F}\},\mathcal{G}\}=0$$

for arbitrary functionals $\mathcal{F}, \mathcal{G}, \mathcal{H}$ of u

- apart from that, $\mathcal{J}(u)$ is not required to be of any particular form and is allowed to depend on the fields u in an arbitrarily complicated way (nonlinear, differential and integral operators)
- if J(u) has a non-empty nullspace, there exist so-called Casimir invariants, that is functionals C for which {F, C} = 0 for all functionals F
- if the Hamiltonian is constant along the flow of some functional Φ, i.e., {H, Φ} = 0, then Φ is a momentum map that is preserved by the flow of H (Noether's theorem)

Morrison–Marsden–Weinstein Bracket

- infinite dimensional fields f, E, B
- Hamiltonian: functional of f, E, B (sum of the kinetic energy of the particles, the electrostatic field energy and the magnetic field energy)

$$\mathcal{H} = \frac{1}{2} \int |v|^2 f(x, v) \, \mathrm{d}x \, \mathrm{d}v + \frac{1}{2} \int \left(|E(x)|^2 + |B(x)|^2 \right) \, \mathrm{d}x$$

Vlasov–Maxwell noncanonical Hamiltonian structure

$$\begin{aligned} \{\mathcal{F},\mathcal{G}\}[f,E,B] &= \int f\left[\frac{\delta\mathcal{F}}{\delta f},\frac{\delta\mathcal{G}}{\delta f}\right] \,\mathrm{d}x \,\mathrm{d}v + \int f\left(\frac{\partial}{\partial v}\frac{\delta\mathcal{F}}{\delta f}\cdot\frac{\delta\mathcal{G}}{\delta E} - \frac{\partial}{\partial v}\frac{\delta\mathcal{G}}{\delta f}\cdot\frac{\delta\mathcal{F}}{\delta E}\right) \,\mathrm{d}x \,\mathrm{d}v \\ &+ \int fB \cdot \left(\frac{\partial}{\partial v}\frac{\delta\mathcal{F}}{\delta f}\times\frac{\partial}{\partial v}\frac{\delta\mathcal{G}}{\delta f}\right) \,\mathrm{d}x \,\mathrm{d}v + \int \left(\frac{\delta\mathcal{F}}{\delta E}\cdot\nabla\times\frac{\delta\mathcal{G}}{\delta B} - \frac{\delta\mathcal{G}}{\delta E}\cdot\nabla\times\frac{\delta\mathcal{F}}{\delta B}\right) \,\mathrm{d}x \,\mathrm{d}v \end{aligned}$$

- time evolution of any functional $\mathcal{F}[f, E, B]$

$$\frac{d}{dt}\mathcal{F}[f, E, B] = \{\mathcal{F}, \mathcal{H}\}$$

- infinite dimensional fields f, E, $B \rightarrow$ finite-dimensional representation f_h , E_h , B_h
- Hamiltonian: functional of f, E, B (sum of the kinetic energy of the particles, the electrostatic field energy and the magnetic field energy) \rightarrow discretisation of functionals

$$\mathcal{H} = \frac{1}{2} \int |v|^2 f(x, v) \, \mathrm{d}x \, \mathrm{d}v + \frac{1}{2} \int \left(|E(x)|^2 + |B(x)|^2 \right) \, \mathrm{d}x$$

• Vlasov–Maxwell noncanonical Hamiltonian structure \rightarrow discrete functional derivatives

$$\begin{aligned} \{\mathcal{F}, \mathcal{G}\}[f, E, B] &= \int f\left[\frac{\delta \mathcal{F}}{\delta f}, \frac{\delta \mathcal{G}}{\delta f}\right] \, \mathrm{d}x \, \mathrm{d}v + \int f\left(\frac{\partial}{\partial v} \frac{\delta \mathcal{F}}{\delta f} \cdot \frac{\delta \mathcal{G}}{\delta E} - \frac{\partial}{\partial v} \frac{\delta \mathcal{G}}{\delta f} \cdot \frac{\delta \mathcal{F}}{\delta E}\right) \, \mathrm{d}x \, \mathrm{d}v \\ &+ \int f B \cdot \left(\frac{\partial}{\partial v} \frac{\delta \mathcal{F}}{\delta f} \times \frac{\partial}{\partial v} \frac{\delta \mathcal{G}}{\delta f}\right) \, \mathrm{d}x \, \mathrm{d}v + \int \left(\frac{\delta \mathcal{F}}{\delta E} \cdot \nabla \times \frac{\delta \mathcal{G}}{\delta B} - \frac{\delta \mathcal{G}}{\delta E} \cdot \nabla \times \frac{\delta \mathcal{F}}{\delta B}\right) \, \mathrm{d}x \, \mathrm{d}v \end{aligned}$$

• time evolution of any functional $\mathcal{F}[f, E, B] \rightarrow$ time discretisation: splitting methods, integral preserving methods

$$\frac{d}{dt}\mathcal{F}[f, E, B] = \{\mathcal{F}, \mathcal{H}\}$$

Discretisation of the Fields

• particle-like distribution function for N_p particles labeled by a,

$$f_h(x, v, t) = \sum_{a=1}^{N_p} w_a \,\delta\big(x - x_a(t)\big) \,\delta\big(v - v_a(t)\big),$$

with weights w_a , particle positions x_a and particle velocities v_a

• 1-form and 2-form spline basis functions (vector-valued)

$$\Lambda^{1}_{\alpha}(x) = \begin{pmatrix} \Lambda^{1,1}_{\alpha}(x) \\ \Lambda^{1,2}_{\alpha}(x) \\ \Lambda^{1,3}_{\alpha}(x) \end{pmatrix}, \qquad \qquad \Lambda^{2}_{\alpha}(x) = \begin{pmatrix} \Lambda^{2,1}_{\alpha}(x) \\ \Lambda^{2,2}_{\alpha}(x) \\ \Lambda^{2,3}_{\alpha}(x) \end{pmatrix}$$

• semi-discrete electric field E_h and magnetic field B_h

$$E_h(t,x) = \sum_{\alpha=1}^{N_{\text{dof}}} e_\alpha(t) \Lambda_\alpha^1(x), \qquad \qquad B_h(t,x) = \sum_{\alpha=1}^{N_{\text{dof}}} b_\alpha(t) \Lambda_\alpha^2(x)$$

with coefficient vectors \boldsymbol{e} and \boldsymbol{b}

Discretisation of the Distribution Function

• functionals of the distribution function, $\mathcal{F}[f]$, restricted to particle-like distribution functions,

$$f_h(x, v, t) = \sum_{a=1}^{N_p} w_a \,\delta\big(x - x_a(t)\big) \,\delta\big(v - v_a(t)\big),$$

become functions of the particle phasespace trajectories,

 $\mathcal{F}[f_h] = F(x_a, v_a)$

replace functional derivatives with partial derivatives

$$\frac{\partial F}{\partial x_a} = w_a \frac{\partial}{\partial x} \frac{\delta \mathcal{F}}{\delta f} \Big|_{(x_a, v_a)} \qquad \text{and} \qquad \frac{\partial F}{\partial v_a} = w_a \frac{\partial}{\partial v} \frac{\delta \mathcal{F}}{\delta f} \Big|_{(x_a, v_a)}$$

rewrite kinetic bracket as semi-discrete particle bracket

$$\begin{split} \int f\left[\frac{\delta\mathcal{F}}{\delta f},\frac{\delta\mathcal{G}}{\delta f}\right] \,\mathrm{d}x \,\mathrm{d}v &= \sum_{a} w_{a} \left(\frac{\partial}{\partial x}\frac{\delta\mathcal{F}}{\delta f} \cdot \frac{\partial}{\partial v}\frac{\delta\mathcal{G}}{\delta f} - \frac{\partial}{\partial v}\frac{\delta\mathcal{F}}{\delta f} \cdot \frac{\partial}{\partial x}\frac{\delta\mathcal{G}}{\delta f}\right)\Big|_{(x_{a},v_{a})} \\ &= \sum_{a} \frac{1}{w_{a}} \left(\frac{\partial F}{\partial x_{a}} \cdot \frac{\partial G}{\partial v_{a}} - \frac{\partial G}{\partial x_{a}} \cdot \frac{\partial F}{\partial v_{a}}\right) \end{split}$$

Discretisation of the Electrodynamic Fields

• semi-discrete electric field E_h and magnetic field B_h

$$E_h(x) = \sum_{\alpha} e_{\alpha}(t) \Lambda^1_{\alpha}(x), \qquad \qquad B_h(x) = \sum_{\alpha} b_{\alpha}(t) \Lambda^2_{\alpha}(x)$$

• functionals $\mathcal{F}[E]$ and $\mathcal{F}[B]$, restricted to the semi-discrete fields E_h and B_h , become functions F(e) and F(b) of the finite element coefficients

$$\mathcal{F}[E_h] = F(\boldsymbol{e}), \qquad \qquad \mathcal{F}[B_h] = F(\boldsymbol{b})$$

• replace functional derivatives of $\mathcal{F}[E_h]$ and $\mathcal{F}[B_h]$ with partial derivatives of F(e) and F(b)

$$\frac{\delta \mathcal{F}[E_h]}{\delta E} = \sum_{\alpha,\beta} \frac{\partial F(\boldsymbol{e})}{\partial e_{\alpha}} \, (\mathbb{M}_1^{-1})_{\alpha\beta} \, \Lambda_{\beta}^1(x), \qquad \qquad \frac{\delta \mathcal{F}[B_h]}{\delta B} = \sum_{\alpha,\beta} \frac{\partial F(\boldsymbol{b})}{\partial b_{\alpha}} \, (\mathbb{M}_2^{-1})_{\alpha\beta} \, \Lambda_{\beta}^2(x)$$

with mass matrices

$$(\mathbb{M}_1)_{\alpha\beta} = \int \Lambda^1_{\alpha}(x) \Lambda^1_{\beta}(x) \,\mathrm{d}x, \qquad \qquad (\mathbb{M}_2)_{\alpha\beta} = \int \Lambda^2_{\alpha}(x) \Lambda^2_{\beta}(x) \,\mathrm{d}x$$

Semi-Discrete Poisson Bracket

semi-discrete Poisson bracket

$$\{F, G\}_{d}[\mathbf{X}, \mathbf{V}, \mathbf{e}, \mathbf{b}] = \frac{\partial F}{\partial \mathbf{X}} \mathbb{M}_{p}^{-1} \frac{\partial G}{\partial \mathbf{V}} - \frac{\partial G}{\partial \mathbf{X}} \mathbb{M}_{p}^{-1} \frac{\partial F}{\partial \mathbf{V}} + \left(\frac{\partial F}{\partial \mathbf{V}}\right)^{\top} \mathbb{M}_{p}^{-1} \mathbb{M}_{q} \mathbb{A}^{1}(\mathbf{X})^{\top} \mathbb{M}_{1}^{-1} \left(\frac{\partial G}{\partial \mathbf{e}}\right) - \left(\frac{\partial F}{\partial \mathbf{e}}\right)^{\top} \mathbb{M}_{1}^{-1} \mathbb{A}^{1}(\mathbf{X}) \mathbb{M}_{q} \mathbb{M}_{p}^{-1} \left(\frac{\partial G}{\partial \mathbf{V}}\right) + \left(\frac{\partial F}{\partial \mathbf{V}}\right)^{\top} \mathbb{M}_{p}^{-1} \mathbb{M}_{q} \mathbb{B}(\mathbf{X}, \mathbf{b}) \mathbb{M}_{p}^{-1} \left(\frac{\partial G}{\partial \mathbf{V}}\right) + \left(\frac{\partial F}{\partial \mathbf{e}}\right)^{\top} \mathbb{M}_{1}^{-1} \mathbb{C}^{\top} \left(\frac{\partial G}{\partial \mathbf{b}}\right) - \left(\frac{\partial F}{\partial \mathbf{b}}\right)^{\top} \mathbb{C} \mathbb{M}_{1}^{-1} \left(\frac{\partial G}{\partial \mathbf{e}}\right)$$

- mass & charge matrices: $\mathbb{M}_p = M_p \otimes \mathbb{I}_3$, $\mathbb{M}_q = M_q \otimes \mathbb{I}_3$, $(M_p)_{aa} = m_a w_a$, $(M_q)_{aa} = q_a w_a$
- $\mathbb{A}^1(X)$ is the $3N_p \times N_1$ matrix with generic term $\mathbf{\Lambda}^1_i(x_a)$ with $1 \le a \le N_p$, $1 \le i \le N_1$
- = $\mathbb{B}({m X},{m b})$ is the $3N_p imes 3N_p$ block diagonal matrix with generic block

$$\widehat{B}_{h}(\boldsymbol{x}_{a},t) = \sum_{i=1}^{N_{2}} b_{i}(t) egin{pmatrix} 0 & \Lambda_{i}^{2,3}(\boldsymbol{x}_{a}) & -\Lambda_{i}^{2,2}(\boldsymbol{x}_{a}) \ -\Lambda_{i}^{2,3}(\boldsymbol{x}_{a}) & 0 & \Lambda_{i}^{2,1}(\boldsymbol{x}_{a}) \ \Lambda_{i}^{2,2}(\boldsymbol{x}_{a}) & -\Lambda_{i}^{2,1}(\boldsymbol{x}_{a}) & 0 \end{pmatrix}$$

• with discrete Hamiltonian

$$\mathcal{H} = \mathcal{H}(f_h, E_h, B_h) = \frac{1}{2} \mathbf{V}^{\top} \mathbb{M}_p \mathbf{V} + \frac{1}{2} \mathbf{e}^{\top} \mathbb{M}_1 \mathbf{e} + \frac{1}{2} \mathbf{b}^{\top} \mathbb{M}_2 \mathbf{b}.$$

• semi-discrete equations of motion

$$\begin{split} \dot{\boldsymbol{X}} &= \{\boldsymbol{X}, H\}_d = \boldsymbol{V}, & \frac{dx_s}{dt} = v_s, \\ \dot{\boldsymbol{V}} &= \{\boldsymbol{V}, H\}_d = \mathbb{M}_p^{-1} \mathbb{M}_q \big(\mathbb{A}^1(\boldsymbol{X}) \boldsymbol{e} + \mathbb{B}(\boldsymbol{X}, \boldsymbol{b}) \boldsymbol{V} \big), & \frac{dv_s}{dt} = e_s \big(E(x_s) + v_s \times B(x_s) \big) \\ \dot{\boldsymbol{e}} &= \{\boldsymbol{e}, H\}_d = \mathbb{M}_1^{-1} \big(\mathbb{C}^\top \mathbb{M}_2 \boldsymbol{b} - \mathbb{A}^1(\boldsymbol{X})^\top \mathbb{M}_q \boldsymbol{V} \big), & \frac{\partial E}{\partial t} = \operatorname{curl} B - J, \\ \dot{\boldsymbol{b}} &= \{\boldsymbol{b}, H\}_d = -\mathbb{C} \boldsymbol{e}, & \frac{\partial B}{\partial t} = -\operatorname{curl} E \end{split}$$

Semi-Discrete Poisson System

- action of the discrete bracket on functions F and G of $\boldsymbol{u} = (\boldsymbol{X}, \boldsymbol{V}, \boldsymbol{e}, \boldsymbol{b})^{\top}$

 $\{F, G\}_d = \mathbf{D}F^{\top}J(\boldsymbol{u})\mathbf{D}G$

- Poisson system: $\dot{\pmb{u}} = \textit{J}(\pmb{u}) \, \nabla \textit{H}(\pmb{u})$ with $\pmb{u} = (\pmb{X}, \, \pmb{V}, \, \pmb{e}, \, \pmb{b})^{\top}$ and

$$I(\boldsymbol{u}) = \begin{pmatrix} 0 & \mathbb{M}_p^{-1} & 0 & 0 \\ -\mathbb{M}_p^{-1} & \mathbb{M}_p^{-1} \mathbb{M}_q \mathbb{B}(\boldsymbol{X}, \boldsymbol{b}) \mathbb{M}_p^{-1} & \mathbb{M}_p^{-1} \mathbb{M}_q \mathbb{A}^1(\boldsymbol{X}) \mathbb{M}_1^{-1} & 0 \\ 0 & -\mathbb{M}_1^{-1} \mathbb{A}^1(\boldsymbol{X})^\top \mathbb{M}_q \mathbb{M}_p^{-1} & 0 & \mathbb{M}_1^{-1} \mathbb{C}^\top \\ 0 & 0 & -\mathbb{C} \mathbb{M}_1^{-1} & 0 \end{pmatrix}$$

• J is anti-symmetric and satisfies the Jacobi identity if

div
$$B_h(x, t) = 0$$
 and $\operatorname{curl} \mathbf{\Lambda}^1 = \mathbb{C}^\top \mathbf{\Lambda}^2$

- ightarrow both conditions are satisfied due to the discrete deRham complex structure
- \rightarrow choosing initial conditions such that div $B_h(x,0) = 0$ we have div $B_h(x,t) = 0$ for all times t

Casimir Invariants

- Casimir invariants: functionals C(f, E, B) which Poisson commute with every other functional G(f, E, B) so that $\{C, G\} = 0$
- integral of any real function h_s of each distribution function f_s

$$\mathcal{C}_s = \int h_s(f_s) \,\mathrm{d}x \,\mathrm{d}v$$

Gauss' law

divergence-free property of the magnetic field (pseudo-Casimir)

$$C_B = \int h_B(x) \operatorname{div} B \operatorname{d} x,$$
 $\mathbb{D} \boldsymbol{b}(t) = 0 \quad \text{if} \quad \mathbb{D} \boldsymbol{b}(0) = 0$

 $(h_E \text{ and } h_B \text{ are arbitrary real functions of } x)$

 $\rightarrow\,$ the semi-discrete system, satisfying the Jacobi identity and preserving all Casimir invariants, is a Hamiltonian system of ODEs

Time Integration

Splitting Methods

Hamiltonian splitting²

$$H = H_{V_1} + H_{V_2} + H_{V_3} + H_E + H_B$$

with

$$H_{V_i} = \frac{1}{2} \boldsymbol{V}_i^T \mathbb{M}_p \boldsymbol{V}_i, \qquad \qquad H_E = \frac{1}{2} \boldsymbol{e}^T \mathbb{M}_1 \boldsymbol{e}, \qquad \qquad H_B = \frac{1}{2} \boldsymbol{b}^T \mathbb{M}_2 \boldsymbol{b}$$

split semi-discrete Vlasov-Maxwell equations into five subsystems

$$\dot{\boldsymbol{u}} = \{\boldsymbol{u}, H_{V_i}\}_d, \qquad \qquad \dot{\boldsymbol{u}} = \{\boldsymbol{u}, H_E\}_d, \qquad \qquad \dot{\boldsymbol{u}} = \{\boldsymbol{u}, H_B\}_d$$

each subsystem can be solved exactly

$$arphi_{t,E}(oldsymbol{u}_0)=oldsymbol{u}_0+\int_0^t \{oldsymbol{u},H_E\}_d dt, \qquad arphi_{t,B}(oldsymbol{u}_0)=oldsymbol{u}_0+\int_0^t \{oldsymbol{u},H_B\}_d dt, \qquad ...$$

² Crouseilles, Einkemmer, Faou. Hamiltonian splitting for the Vlasov-Maxwell equations. Journal of Computational Physics 283, 224–240, 2015. Qin, He, Zhang, Liu, Xiao, Wang. Comment on "Hamiltonian splitting for the Vlasov-Maxwell equations". arXiv:1504.07785, 2015. He, Qin, Sun, Xiao, Zhang, Liu. Hamiltonian integration methods for Vlasov-Maxwell equations. arXiv:1505.06076, 2015.

Splitting Methods

for the exact solution of the kinetic subsystems

$$\varphi_{t,V_i}(\boldsymbol{u}_0) = \boldsymbol{u}_0 + \int_0^t \{\boldsymbol{u}, H_{V_i}\}_d dt$$

we have to compute line integrals exactly³ (e.g. i = 1)

$$\begin{split} \mathbf{X}_{1}(h) &= \mathbf{X}_{1}(0) + h \mathbf{V}_{1}(0), \\ \mathbf{V}_{2}(h) &= \mathbf{V}_{2}(0) + \int_{0}^{h} dt \, \mathbf{V}_{3}(0) \, \mathbf{b}(0) \, \Lambda^{2,1}(\mathbf{X}(t)), \\ \mathbf{V}_{3}(h) &= \mathbf{V}_{3}(0) - \int_{0}^{h} dt \, \mathbf{V}_{2}(0) \, \mathbf{b}(0) \, \Lambda^{2,1}(\mathbf{X}(t)), \\ \mathbb{M}_{1} \, \mathbf{e}(h) &= \mathbb{M}_{1} \, \mathbf{e}(0) - \int_{0}^{h} dt \, \Lambda^{1,1}(\mathbf{X}(t)) \, \mathbb{M}_{p} \, \mathbf{V}_{1}(0) \end{split}$$

 $\rightarrow\,$ solution is gauge invariant and charge conserving

³ Campos Pinto, Jund, Salmon, Sonnendrücker. Charge-conserving FEM-PIC schemes on general grids. Comptes Rendus Mécanique 342, 570-582, 2014. Squire, Qin, Tang. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme. Physics of Plasmas 19, 084501, 2012. Moon, Teixeira, Omelchenko. Exact charge-conserving scatter-gather algorithm for particle-in-cell simulations on unstructured grids. CPC 194, 43-53, 2015.

Splitting Methods

Hamiltonian splitting

 $H = H_{V_1} + H_{V_2} + H_{V_3} + H_E + H_B$

- the exact solution of each subsystem constitutes a Poisson map
- compositions of Poisson maps are themselves Poisson maps
- construction of Poisson structure preserving integrators by composition of exact solutions of the subsystems
- first order time integrator: Lie-Trotter composition

 $\Psi_h = \varphi_{h,E} \circ \varphi_{h,B} \circ \varphi_{h,V_1} \circ \varphi_{h,V_2} \circ \varphi_{h,V_3}$

second order time integrator: symmetric composition

 $\Psi_h = \varphi_{h/2,E} \circ \varphi_{h/2,B} \circ \varphi_{h/2,V_1} \circ \varphi_{h/2,V_2} \circ \varphi_{h,V_3} \circ \varphi_{h/2,V_2} \circ \varphi_{h/2,V_1} \circ \varphi_{h/2,B} \circ \varphi_{h/2,E}$

See Talk by Eric Sonnendrücker...

Summary and Outlook

Summary and Outlook

- discrete electrodynamics (fluid dynamics, magnetohydrodynamics, ...)
 - discrete differential forms and discrete deRham complexes of compatible spaces: splines, mixed finite elements, mimetic spectral elements, virtual elements
 - exactly satisfy identities from vector calculus (curl grad = 0, div curl = 0)
 - stability follows from exactness and compatibility of the finite element deRham complex
- discrete Poisson brackets
 - Poisson structure is retained at the semi-discrete level
 - gauge invariance, charge conservation, Casimir conservation
 - construction of Poisson time integrators by Hamiltonian splitting methods
 - construction of energy-preserving time integrators by discrete gradients (c.f. talk by Eric Sonnendrücker)
- ongoing and future work
 - Eulerian discretisation, boundary conditions, geometry, delta-f, collisions, ...
 - gyrokinetics, magnetohydrodynamics, kinetic-fluid hybrid models, ...
 - metriplectic integrators for the Landau collision operator (arXiv:1707.01801, accepted by PoP)

Appendix

- consider some functional \mathcal{F} of some field $f \in H^1(\Omega)$
- the functional derivative of $\mathcal F$ with respect to f is defined by

$$\frac{d}{d\epsilon}\mathcal{F}[f+\epsilon g]\Big|_{\epsilon=0} = \left\langle \frac{\delta \mathcal{F}}{\delta f}, g \right\rangle_{L^2} = \int_{\Omega} \frac{\delta \mathcal{F}}{\delta f} g(z) \, dz$$

where g is an element of the same space as f, that is $g \in H^1(\Omega)$, while the functional derivative $\delta \mathcal{F}/\delta f$ is an element of the dual space of $H^1(\Omega)$, and $\langle \cdot, \cdot \rangle$ denotes the appropriate pairing

- consider a finite element approximation f_h of f with respect to a basis φ_i

$$f_h(t,z) = \sum_{i=1}^N f_i(t) \varphi_i(z), \qquad \qquad \mathbf{f}(t) = \left(f_1(t), \dots, f_N(t)\right)^T \in \mathbb{R}^N$$

• if we apply the functional \mathcal{F} to f_h , then \mathcal{F} becomes a function F of the degrees of freedom f

 $\mathcal{F}[f_h] = F(f)$

- in order to discretise brackets, we need to replace functional derivatives like $\delta F/\delta f$ with partial derivative $\partial F/\partial f$
- require that the pairing be equal to some finite-dimensional equivalent

$$\left\langle \frac{\delta \mathcal{F}[f_h]}{\delta f}, g_h \right\rangle_{L^2} = \left\langle \frac{\partial F}{\partial f}, g \right\rangle_{\mathbb{R}^N} = \sum_{i=1}^N \frac{\partial F}{\partial f_i} g_i$$

where
$$\boldsymbol{g}(t) = \left(g_1(t), \ldots, g_N(t)\right)^T \in \mathbb{R}^N$$
 denotes the degrees of freedom of g_h

$$g_h(t,z) = \sum_{i=1}^{N} g_i(t) \varphi_i(z)$$

- denote the dual basis to $\varphi = (\varphi_1, \dots, \varphi_N)^T$ by $\psi = (\psi_1, \dots, \psi_N)^T$

$$\langle \psi_i, \varphi_j \rangle_{L^2} = \int_{\Omega} \psi_i(z) \varphi_j(z) \, dz = \delta_{ij}$$
 for $1 \le i, j \le N$

in the dual basis, the functional derivative can be written as

$$\frac{\delta \mathcal{F}[f_h]}{\delta f} = \sum_{i=1}^N a_i \,\psi_i(z)$$

• choose $g = (0, \ldots, 0, 1, 0, \ldots, 0)^{\top}$ with 1 at the *i*-th position and 0 everywhere else, so that $g_h = \varphi_i$, we have

$$\left\langle \frac{\delta \mathcal{F}[f_h]}{\delta f} \,,\, g_h \right\rangle_{L^2} = \int_{\Omega} \sum_{j=1}^N a_j \,\psi_j(z) \,\varphi_i(z) \,dz = \frac{\partial F}{\partial f_i} = \left\langle \frac{\partial F}{\partial f} \,,\, g \right\rangle_{\mathbb{R}^N}$$

and thus find that

$$a_i = \frac{\partial F}{\partial f_i}$$
 and therefore

$$\frac{\delta \mathcal{F}[f_h]}{\delta f} = \sum_{i=1}^N \frac{\partial F}{\partial f_i} \psi_i(z)$$

• express the dual basis ψ in terms of the primal basis φ as

$$\psi_i(z) = \sum_{j=1}^N \alpha_{ij} \, \varphi_j(z) \qquad \qquad \text{so t}$$

hat

$$\frac{\delta \mathcal{F}[f_h]}{\delta f} = \sum_{i,j=1}^N \frac{\partial F}{\partial f_i} \,\alpha_{ij} \,\varphi_j(z)$$

• determine the unknown coefficients α_{ij} by the L_2 inner product

$$\langle \psi_i, \varphi_k \rangle_{L^2} = \int_{\Omega} \sum_{j=1}^N \alpha_{ij} \varphi_j(z) \varphi_k(z) dz = \sum_{j=1}^N \alpha_{ij} \int_{\Omega} \varphi_j(z) \varphi_k(z) dz.$$

- denoting by $\mathbb M$ the mass matrix of the basis functions φ

$$\mathbb{M}_{jk} = \int_{\Omega} \varphi_j(z) \, \varphi_k(z) \, dz,$$

and using $\left<\psi_{i}\,,\,\varphi_{k}\right>_{L^{2}}=\delta_{ik}$, we obtain the relation

$$\mathbb{1} = \alpha \mathbb{M} \qquad \text{ and thus } \qquad \alpha = \mathbb{M}^{-1}$$

so that

$$\frac{\delta \mathcal{F}[f_h]}{\delta f} = \sum_{i,j=1}^N \frac{\partial F}{\partial f_i} (\mathbb{M}^{-1})_{ij} \varphi_j(z).$$

Numerical Examples

Nonlinear Landau Damping

• numerical example: nonlinear Landau damping

$$f(x, v, t = 0) = \exp\left(-\frac{v_1^2 + v_2^2}{2v_{\rm th}^2}\right) (1 + \alpha \cos(kx)),$$

$$B_3(x, t = 0) = 0,$$

$$E_2(x, t = 0) = 0,$$

and $E_1(x, t = 0)$ is computed from Poisson's equation

numerical parameters: splines of degree 3 and 2

$$x \in [0, 2\pi/k),$$
 $v \in \mathbb{R}^2,$ $\Delta t = 0.05,$ $n_x = 32,$ $n_p = 100,000$

physical parameters:

 $v_{\rm th} = 1,$ k = 0.5, $\alpha = 0.5$

Nonlinear Landau Damping

Integrator	γ_1	γ_2
GEMPIC	-0.286	+0.087
viVlasov1D	-0.286	+0.085
Cheng & Knorr (1976)	-0.281	+0.084
Nakamura & Yabe (1999)	-0.280	+0.085
Ayuso & Hajian (2012)	-0.292	+0.086
Heath, Gamba, Morrison, Michler (2012)	-0.287	+0.075
Cheng, Gamba, Morrison (2013)	-0.291	+0.086

time

Streaming Weibel Instability

numerical example: streaming Weibel instability

$$\begin{split} f(x, v, t = 0) &= \frac{1}{\pi v_{\rm th}} \exp\left(-\frac{1}{2} \frac{v_1^2}{v_{\rm th}^2}\right) \left(\delta \exp\left(-\frac{(v_2 - v_{0,1})^2}{2v_{\rm th}^2}\right) + (1 - \delta) \exp\left(-\frac{(v_2 - v_{0,2})^2}{2v_{\rm th}^2}\right)\right) \\ B_3(x, t = 0) &= \beta \sin(kx), \\ E_2(x, t = 0) &= 0, \end{split}$$

and $E_1(x, t = 0)$ is computed from Poisson's equation

- numerical parameters: splines of degree 3 and 2
 - $x \in [0, 2\pi/k),$ $v \in \mathbb{R}^2,$ $\Delta t = 0.01,$ $n_x = 128,$ $n_p = 2,000,000$
- physical parameters:

$$v_{\rm th} = \frac{0.1}{\sqrt{2}}, \qquad k = 0.2, \qquad \beta = -10^{-3}, \qquad v_{0,1} = 0.5, \qquad v_{0,2} = -0.1, \qquad \delta = \frac{1}{6}$$

Streaming Weibel Instability

Streaming Weibel Instability

time

Propagator	total energy	Gauss' law
Lie	6.4E-5	8.3E-15
Strang	1.4E-6	1.4E-14
2nd, 4 Lie	1.5E-8	2.0E-14
4th, 3 Strang	1.7E-10	9.4E-15
4th, 10 Lie	5.7E-13	1.0E-14
Boris	1.1E-7	5.8E-4