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Abstract

In this paper we write variational integrators for degenerate Lagrangian systems

as general linear methods which turn out to be G-symplectic in nature. Since

variational integrators for degenerate Lagrangian systems suffer from parasitic in-

stabilities, we use the G-symplectic general linear method formulation to calculate

their parasitic growth parameters, thus enabling us to devise strategies to control

numerical instabilities while preserving the underling physical laws of the system.

Variational integrators based on trapezoidal and mid-point quadrature rules are

considered for degenerate Lagrangian systems resulting in two different classes

of general linear methods. We then apply the standard projection technique to

project the numerical solution on whatever manifold the exact solution lies on,

resulting in energy preservation for long time. The numerical results verify our

claims.

Keywords: Variational integrator, degenerate Lagrangian, general linear method,

parasitism, projection technique

1. Introduction

Variational integrators for non-degenerate Lagrangian systems result in symplec-

tic one-step methods [15]. In the following we show that variational integrators

for degenerate Lagrangian systems result in G-symplectic general linear methods.
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Let us consider a degenerate Lagrangian system whose Lagrangian is linear in

velocities and has the form,

L(q, q̇) = 〈α(q), q̇〉−H(q),
∂ 2L

∂ q̇i∂ q̇ j
= 0, L : T Q −→ R, (1)

where α can be a nonlinear function of position q(t) ∈ Q, and H(q) is the Hamil-

tonian of the system. Hamilton’s principle of least action can be applied on (1)

which leads to the Euler-Lagrange equations given as,

∂L

∂q
(q, q̇)−

d

dt

∂L

∂ q̇
(q, q̇) = 0. (2)

In the variational integrator methodology, first the action integral of the degen-

erate Lagrangian system (1) is discretised. Then the application of the discrete

Hamilton’s principle of stationary action results in the discrete Euler Lagrange

equations, which produce the required variational integrators for degenerate La-

grangian systems. These integrators are multistep numerical methods having par-

asitic instabilities.

The nature of the particular multistep method depends upon the choice of quadra-

ture rule to approximate the action integral. If we choose trapezoidal rule, we ob-

tain standard linear multistep method, whereas the choice of midpoint rule results

in a two step Runge–Kutta method, both of which can be written as G-symplectic

general linear methods [12, 13, 14, 15, 16]. We then apply the projection tech-

nique [1, 9, 10] to control the effects of parasitism [4, 6]. This approach has the

advantage that the resulting methods are applicable to all degenerate Lagrangians

of the form (1).

2. Variational Integrators for Degenerate Lagrangian Systems

Let us consider the action integral which is given as,

A[q(t)] =
∫

L(q(t), q̇(t))dt, (3)

and discretise it to obtain

Ad [qd] =
N−1

∑
m=0

Ld(qm,qm+1),
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with the discrete Lagrangian Ld providing some approximation of the continuous

Lagrangian L,

Ld(qm,qm+1)≈
∫ tm+1

tm

L(q(t), q̇(t))dt, (4)

where Ld : Q × Q −→ R. Here, we divide the time interval into an equidistant

monotonic sequence {tm}
N
m=0 and approximate the solution at each point in time

as qm ≈ q(tm) leading to the discrete trajectory {qm}
N
m=0 joined by a discrete curve

and then sum the discrete Lagrangian Ld(qm,qm+1) on each adjacent pair. The

velocities are approximated using finite differences as,

q̇ ≈
qm+1 −qm

h
,

where h = tm+1 − tm ∀m is the time step size. We approximate the the integral

in (4) using quadrature rules such as the trapezoidal rule to obtain the discrete

Lagrangian Ltr
d given as,

Ltr
d (qm,qm+1) =

h

2
[L(qm,

qm+1 −qm

h
)+L(qm+1,

qm+1 −qm

h
)], (5)

or the midpoint rule to obtain to obtain the discrete Lagrangian L
mp
d given as,

L
mp
d (qm,qm+1) = h[L(

qm +qm+1

2
,
qm+1 −qm

h
)], (6)

The discrete trajectories {qm}
N
m=0 satisfy a discrete version of Hamilton’s princi-

ple of stationary action which require δAd [qd] = 0. The variation is given as,

δAd [qd] = δ
N−1

∑
m=0

Ld(qm,qm+1),

=
N−1

∑
m=0

[D1Ld(qm,qm+1) ·δqm+D2Ld(qm,qm+1) ·δqm+1],

Here an integration by parts is used, and D1 and D2 are the derivatives with respect

to the first and the second arguments respectively. Applying integration by parts

and using that the variations at the endpoints are fixed so δq0 = δqN = 0, we

obtain,

δAd[qd] =
N−1

∑
m=1

[D1Ld(qm,qm+1).δqm+D2Ld(qm−1,qm)].δqm.

By invoking the Hamilton’s principle of stationary action which requires δAd = 0

for all δqd , we obtain discrete Euler-Lagrange equations,

D1Ld(qm,qm+1)+D2Ld(qm−1,qm) = 0. (7)
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2.1. Trapezoidal Rule

For the special case of degenerate Lagrangian system (1), we have for trapezoidal

rule,

Ltr
d (qm,qm+1) =

h

2
[α(qm) ·

qm+1 −qm

h
−H(qm)+α(qm+1) ·

qm+1 −qm

h
−H(qm+1)],

with the differentiation operators given as,

D1Ltr
d (qm,qm+1) =

h

2
[∇α(qm) ·

qm+1 −qm

h
−

α(qm)

h
−

α(qm+1)

h
−∇H(qm)],

D2Ltr
d (qm−1,qm) =

h

2
[∇α(qm).

qm−qm−1

h
+

α(qm)

h
+

α(qm−1)

h
−∇H(qm)].

The discrete Euler-Lagrange equation (7) results in the following variational inte-

grator using the trapezoidal rule,

∇α(qm).(qm+1−qm−1) = α(qm+1)−α(qm−1)+2h∇H(qm). (8)

2.2. Midpoint Rule

The use of midpoint quadrature rule results in,

L
mp
d

(qm,qm+1) = h[α(
qm+qm+1

2
).

qm+1−qm

h
−H(

qm+qm+1

2
)],

with the differentiation operators given as,

D
mp
1 Ld(qm,qm+1) = h[

1

2
∇α(

qm+qm+1

2
).

qm+1−qm

h
−

1

h
α(

qm+qm+1

2
)−

1

2
∇H(

qm+qm+1

2
)],

D
mp
2 Ld(qm−1,qm) = h[

1

2
∇α(

qm−1 +qm

2
).

qm−qm−1

h
+

1

h
α(

qm−1 +qm

2
)−

1

2
∇H(

qm−1+qm

2
)].

The discrete Euler-Lagrange equation (7) results in the following variational inte-

grator using the midpoint rule,

1

2
∇α(

qm+qm+1

2
) ·

qm+1 −qm

h
+

1

2
∇α(

qm−1 +qm

2
).

qm−qm−1

h
=

1

h
[α(

qm+qm+1

2
)−α(

qm−1+qm

2
)]+

1

2
[∇H(

qm+qm+1

2
)+∇H(

qm−1+qm

2
)].

(9)
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3. General Linear Methods

General linear methods are multi-value multi-derivative numerical methods for

solving initial value problems [3, 11],

y′ = f (y), y(0) = y0, (10)

where f : RN →R
N and x ∈R. They have internal stages like Runge–Kutta meth-

ods and several input values like multi-step methods but they are more general in

nature. An s-stage general linear method with r-component input vector has the

general form,

Y = h(A⊗ I) f (Y)+(U ⊗ I)y[m−1], Y ∈ (RN)s (11)

y[m] = h(B⊗ I) f (Y)+(V ⊗ I)y[m−1] y ∈ (RN)r

The vector form of these quantities are,

Y =











Y1

Y2
...

Ys











, y[m] =











y1
[m]

y2
[m]

...

yr
[m]











.

The matrices (A,U,B,V) represents a particular general linear method where

M =

[

A U

B V

]

(12)

is a (s+ r)× (s+ r) matrix tableau. We can omit the Kronecker products to write

the general linear methods as,

Y = hA f (Y )+Uy[m−1],

y[m] = hB f (Y )+Vy[m−1].

A more convenient way of writing a general linear method is,

[

Y

y[m]

]

=

[

A U

B V

][

h f (Y )

y[m−1]

]

. (13)
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3.1. Runge-Kutta Methods as General Linear Methods

A Runge–Kutta method [A,b,c] has s-stages and a single input with r = 1 so that

the matrices U = 1 ∈ (RN)s, V = 1 and B is a single row vector [b]. Th general

linear formulation of a Runge–Kutta method is,

[

Y

y[m]

]

=

[

A 1

b 1

][

h f (Y )

y[m−1]

]

.

3.2. Linear Multistep Methods as General Linear Methods

A linear multistep method such as an Adams-Moulton method given as,

ym = ym−1 +h(β0 f (ym)+β1 f (ym−1)+β2 f (ym−2)+ · · ·+βk f (ym−k)),

written in general linear method formulation has s = 1 and is given as,























Y1

ym

h f (Y1)
h f (ym−1)
h f (ym−2)

...

h f (ym−k+1)























=























β0 1 β1 β2 · · · βk−1 βk

β0 1 β1 β2 · · · βk−1 βk

1 0 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 0













































h f (Y1)
ym−1

h f (ym−1)
h f (ym−2)
h f (ym−3)

...

h f (ym−k)























(14)

3.3. Two-Step Runge–Kutta Methods as General Linear Methods

The general form of a two step Runge–Kutta method with s stages is,

Y
[m]
i = (1−αi)ym +αiym−1 +h

s

∑
j=1

[ai j f (Y
[m]
j )+ui j f (Y

[m−1]
j )], i = 1, . . . ,s,

ym+1 = (1−ϑ)ym +ϑym−1 +h
s

∑
j=1

[b j f (Y
[m]
j )+ v j f (Y

[m−1]
j )]. (15)

Introducing a new variable zm defined as,

zm = ϑym−1 + ym +h
s

∑
j=1

v j f (Y m−1
j ). (16)

This allows us to rewrite the equation for the internal stages in (15) as,

Y
[m]
i =

1

1+ϑ
zm +h

s

∑
j=1

ai j f (Y
[m]
j ), (17)
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and update rule (15) as,

ym+1 = zm−ϑym +h
s

∑
j=1

b j f (Y
[m]
j ). (18)

Inserting (18) into (16) we obtain,

zm+1 = zm +h
s

∑
j=1

(b j + v j) f (Y
[m]
j ), (19)

so that the resulting general linear method reads,





Y [m]

y[m+1]

z[m+1]



=





A 0 1
1+ϑ

bt −ϑ 1

bt + vt 0 1









h f (Y [m])

y[m]

z[m]



 . (20)

4. G-symplecticity and control of parasitism

Symplectic one step methods preserve the quadratic invariants,

〈y,y〉= yT Sy,

where S is a symmetric matrix. G-symplectic general linear methods preserve an

extended version of the quadratic invariants given as,

〈y[m],y[m]〉G = 〈y[m−1],y[m−1]〉G, (21)

with G ∈ R
r×r a symmetric matrix and

〈y,z〉G =
r

∑
i, j=1

gi j〈yi,z j〉.

This is possible if and only if,

G =V T GV,

DU = BT GV,

DA+AT D = BT GB.

with D ∈ R
s×s a diagonal matrix [3]. G-symplectic general linear methods suffer

from parasitic instabilities similar to those encountered by standard linear multi-

step methods. The reason is that the perturbation in parasitic components of the
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numerical solution is amplified by the integration process.The parasitic growth

parameter µ for a G-symplectic general linear method has been calculated in [8]

and is obtained from the matrix product

BU =

[

1 0

0 −µ

]

.

The second order parasitic growth parameter has been calculated in [5]. Following

[10], the parasitic growth parameter can be calculated by the formula,

µi = (ξi)
−1w∗

i BUwi, (22)

where ξi is the i-th eigenvalue of V and wi is the corresponding left eigenvector

with ξ1 = 1 and ξi 6= 1 for 2 ≤ i ≤ r.

5. Projection Technique for General Linear Methods

Projection techniques are applicable to differential equations y′ = f (y(x)) that

reside on a manifold N given as,

N = {y;ψ(y) = 0},

where ψ(y) is an invariant of the given differential equation. Standard numerical

methods produce approximate solutions that do not reside onto the manifold N.

Such methods can be combined with projection techniques, which ensure that the

numerical solution stays on the manifold N at all times.

For general linear methods, standard projection technique has been implemented

in [10]. The idea is to project only the first component of the output vector y[m+1]

onto the manifold, namely by,

y
[m+1]
1 = ỹ

[m+1]
1 +

H(y0)−H(ỹ
[m+1]
1 )

< ∇H(ỹ
[m+1]
1 ),∇H(ỹ

[m+1]
1 )>

∇H(ỹ
[m+1]
1 ), (23)

where y0 ∈N is the initial condition such that ψ(y0) = 0, ỹ[m+1] /∈N is the approx-

imate solution obtained by the general linear method and ∇H(y) is the gradient of

H(y).
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6. Variational Integrators as General Linear Methods

6.1. Trapezoidal Rule

Let us recall the variational integrator based on trapezoidal rule (8) given as,

∇α(qm).
qm+1−qm−1

2h
=

α(qm+1)−α(qm−1)

2h
+∇H(qm). (24)

Let us define,

vm =
qm+1 −qm−1

2h
, (25)

and

p = α(q). (26)

Then equation (24) can be rewritten as,

pm+1 − pm−1

2h
= ∇α(qm) · vm−∇H(qm). (27)

The equations (25) and (27) are in fact an application of the central difference

scheme to the differential equations given as,

q̇ = v, (28)

ṗ = ∇α(q) · v−∇H(q), (29)

subject to (26). From (25) and (27), we have

qm+1 = qm−1 +2hvm, (30)

pm+1 = pm−1 +2h[∇α(qm) · vm−∇H(qm)], (31)

or in short,

ym+1 = ym−1 +2h f (ym,zm), (32)

where

y = (q, p)T , f = (v,∇α(q) · v−∇H(q))T . (33)

It is interesting to note that the function f in (33) actually represents the right

hand side of a Hamiltonian differential equation system corresponding to the given
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Lagrangian. Evidently equation (32) is a multistep method, which can be written

as a general linear method (14),

[

A U

B V

]

=













0 0 1 2 0

0 0 1 2 0

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0













. (34)

The method is G-symplectic with

G =









0 1 2 0

1 0 0 0

2 0 0 0

0 0 0 0









, D = [2].

The parasitic growth parameter of (34) is computed by using (22) as µ2 =−1.667,

so that the parasitic mode is unstable.

6.2. Mid-Point Rule

Let us recall the variational integrator based on mid-point rule (9) given as,

1

2
∇α(

qm+qm+1

2
) ·

qm+1 −qm

h
+

1

2
∇α(

qm−1 +qm

2
).

qm−qm−1

h
=

1

h
[α(

qm+qm+1

2
)−α(

qm−1+qm

2
)]+

1

2
[∇H(

qm+qm+1

2
)+∇H(

qm−1+qm

2
)].

(35)

Upon defining,

v
m+ 1

2
=

qm+1 −qm

h
, α(q

m+ 1
2
) = p

m+ 1
2
=

pm + pm+1

2
,

equation (35) can be written as,

q
m+ 1

2
= q

m− 1
2
+

h

2
[v

m− 1
2
+ v

m+ 1
2
], (36)

p
m+ 1

2
= p

m− 1
2
+

h

2
[∇α(q

m− 1
2
) · v

m− 1
2
+∇α(q

m+ 1
2
) · v

m+ 1
2
]

−
h

2
[∇H(q

m− 1
2
)+∇H(q

m+ 1
2
)], (37)
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and

qm+1 = qm−1 +h[v
m− 1

2
+ v

m+ 1
2
], (38)

pm+1 = pm−1 +h[∇α(q
m− 1

2
) · v

m− 1
2
+∇α(q

m+ 1
2
) · v

m+ 1
2
]

−h[∇H(q
m− 1

2
)+∇H(q

m+ 1
2
)], (39)

or in short,

y
m+ 1

2
=

ym−1 + ym

2
+

h

2
[ f (y

m− 1
2
)+ f (y

m+ 1
2
)], (40)

ym+1 = ym−1 +h[ f (y
m− 1

2
)+ f (y

m+ 1
2
)]. (41)

The equation (41) is the two step Runge–Kutta method with just one internal stage

(40), which can be written in general linear method form (20) as,

[

A U

B V

]

=





1/2 0 1/2

1 −1 1

2 0 1



 . (42)

The method is G-symplectic with

G =

[

−2 1

1 1

]

, D = [6].

The matrix V has two eigenvalues, -1 and 1 and the corresponding parasitic growth

parameters are µ = 0 and µ = 1, so that the parasitic modes are stable. It is

important to note that pm 6= α(qm), which is the root cause for the instability

occurring in the algorithm.

7. Starting Algorithm

To find the value of q−1, we use the position momentum form [15, 16]

pm =−D1Ld(qm,qm+1), (43)

pm+1 = D2Ld(qm,qm+1). (44)

To obtain a relation between q−1, q0 and p0, use the equation (44) as,

p0 = D2Ld(q−1,q0),

but p0 = α(q0),
=⇒ α(q0) = D2Ld(q−1,q0).
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8. Numerical Experiments

8.1. Lotka-Volterra Model

The Lotka–Volterra Model is often used in mathematical biology for modelling

population growths of animal species. The dynamics of the growth of two species

can be modelled by the following Lagrangian system,

L(q, q̇) = (
log q2

q1
+q2)q̇1 +q1q̇2 −H(q),

with the Hamiltonian H given by,

H(q) = log q1 −q1 +2log q2 −q2.

Here,
∂ 2L

∂ q̇i∂ q̇ j
= 0

An application of variational integrators using trapezoidal rule written as GLM

(34) with initial condition q0 = (1,1) and step-size h = 0.01 yields the relative

energy error in the Lotka–Volterra model as shown in Figure 1.

Figure 1 shows that the variational integrator (34) does not preserve the energy of

the Lotka–Volterra model. We have calculated the relative energy error as follows,

Error = abs(He−Hn)/He,

where He is the exact energy at initial point and Hn is the approximate energy

calculated at all numerical values. We then apply the projection technique (23) on

GLM (34) and calculate the relative energy error again as shown in Figure 2.

Figure 2 shows that the variational integrator for degenerate Lagrangian of Lotka–

Volterra model as GLM (34) with projection technique is preserving the energy

very well.

An application of variational integrator using mid-point rule written as GLM (42)

with initial condition q0 = (1,1) and step-size h = 0.01 yields the relative energy

error in the Lotka–Volterra model as shown in Figure 3.

Figure 3 shows that the variational integrator (42) does not preserve the energy.

We then apply the projection technique (23) on GLM (42) and calculate the rela-

tive energy error again as shown in Figure 4.

Figure 4 shows that the variational integrator for degenerate Lagrangian of Lotka–

Volterra model as GLM (42) with projection technique is preserving the energy

very well.
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Figure 1 – The relative error in energy of the Lotka–Volterra model using GLM of variational

integrator by trapezoidal rule without projection.
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Figure 2 – The relative energy error in Lotka–Volterra model using GLM of variational integrator

by trapezoidal rule with projection.
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Figure 3 – The relative energy error in Lotka–Volterra model using GLM of variational integrator

by mid-point rule without projection.
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Figure 4 – The relative energy error in Lotka–Volterra model using GLM of variational integrator

by mid-point rule with projection.
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8.2. Pendulum

In order to shed light on variational integrator for degenerate Lagrangian system

(9) expressed as a general linear method we consider non-linear pendulum whose

Lagrangian is degenerate,

L(q, q̇) =
[

q[2] 0
]

[

q̇[1]

q̇[2]

]

+ cos(q[1])−
(q[2])2

2
. (45)

An application of variational integrator using mid-point rule written as GLM (42)

with initial condition q0 =(2.3,0) and step-size h= 0.01 yields the relative energy

error in the non-linear pendulum as shown in Figure 5.

Figure 5 shows that the variational integrator (42) does not preserve the energy.

We then apply the projection technique (23) on GLM (42) and calculate the rela-

tive energy error again as shown in Figure 6.

Figure 6 shows that the variational integrator for degenerate Lagrangian of non-

linear pendulum as GLM (42) with projection technique is preserving the energy

very well.

9. Conclusions

We have written variational integrators for a class of degenerate Lagrangian sys-

tem as general linear methods and have applied stabilisation mechanism for G-

symplectic general linear methods to control the effect of parasitism.

We have demonstrated with some numerical examples, that these algorithms have

excellent energy preserving properties for long time.
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Figure 5 – The relative energy error in non-linear pendulum using GLM of variational integrator

by mid-point rule without projection.
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Figure 6 – The relative energy error in non-linear pendulum by using GLM of variational integrator

by mid-point rule with projection.
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